中国图象图形学报A
中國圖象圖形學報A
중국도상도형학보A
JOURNAL OF IMAGE AND GRAPHICS
2009年
11期
2416-2420
,共5页
钱惠敏%茅耀斌%王执铨%叶曙光
錢惠敏%茅耀斌%王執銓%葉曙光
전혜민%모요빈%왕집전%협서광
行为序列分割%行为识别%本征维数%奇异值分解%隐马尔可夫模型
行為序列分割%行為識彆%本徵維數%奇異值分解%隱馬爾可伕模型
행위서렬분할%행위식별%본정유수%기이치분해%은마이가부모형
temporal segmentation of activity sequence%activity recognition%intrinsic dimensionality%SVD%HMM
智能监控系统中的行为分析与识别是当前计算机视觉领域的研究热点,而行为序列分割则是行为分析与识别的基础.提出了一种无监督的行为序列分割算法,并对分割结果进行识别.首先,采用鲁棒的形状编码方案得到人体轮廓的紧凑表示,提取轮廓点集特征描述运动人体;然后,基于奇异值分解(SVD)估计行为序列数据的本征维数,确定数据对应的低维流形,并通过检测特征数据在该流形上的投影误差的突变实现行为序列分割;最后,采用隐马尔可夫模型(HMM)对分割结果进行识别.在公共数据库上的实验结果表明了此分割和识别算法的有效性.
智能鑑控繫統中的行為分析與識彆是噹前計算機視覺領域的研究熱點,而行為序列分割則是行為分析與識彆的基礎.提齣瞭一種無鑑督的行為序列分割算法,併對分割結果進行識彆.首先,採用魯棒的形狀編碼方案得到人體輪廓的緊湊錶示,提取輪廓點集特徵描述運動人體;然後,基于奇異值分解(SVD)估計行為序列數據的本徵維數,確定數據對應的低維流形,併通過檢測特徵數據在該流形上的投影誤差的突變實現行為序列分割;最後,採用隱馬爾可伕模型(HMM)對分割結果進行識彆.在公共數據庫上的實驗結果錶明瞭此分割和識彆算法的有效性.
지능감공계통중적행위분석여식별시당전계산궤시각영역적연구열점,이행위서렬분할칙시행위분석여식별적기출.제출료일충무감독적행위서렬분할산법,병대분할결과진행식별.수선,채용로봉적형상편마방안득도인체륜곽적긴주표시,제취륜곽점집특정묘술운동인체;연후,기우기이치분해(SVD)고계행위서렬수거적본정유수,학정수거대응적저유류형,병통과검측특정수거재해류형상적투영오차적돌변실현행위서렬분할;최후,채용은마이가부모형(HMM)대분할결과진행식별.재공공수거고상적실험결과표명료차분할화식별산법적유효성.
Human motion analysis in an intelligence surveillance system is a hot research topic in computer vision, and temporal segmentation of human activity sequence is the most fundamental step in human motion analysis. In this paper, an unsupervised online temporal segmentation algorithm is presented, and then the segmentation result is recognized by HMM. Firstly, a robust shape encoding scheme is employed to produce a compact representation of human silhouette, and a new feature called contour point set is proposed. Secondly, the intrinsic dimensionality of feature sequence and the corresponding low-dimensional manifolds are determined using SVD, and the break of projecting error of activity sequence on the determinate manifolds is detected as the segmentation point of the activity sequence. Temporal segmentation results are recognized by HMM finally. Experiments on two public databases show the effectiveness of the segmentation and recognition algorithms in this paper.