高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2009年
11期
2252-2257
,共6页
二氧化碳%乙酸%反应机理%Co%Pd%密度泛函理论%广义梯度近似
二氧化碳%乙痠%反應機理%Co%Pd%密度汎函理論%廣義梯度近似
이양화탄%을산%반응궤리%Co%Pd%밀도범함이론%엄의제도근사
Carbon dioxide%Acetic acid%Reaction mechanism%Cobalt%Palladium%Density functional theory%General gradient approtimationry(GGA)
采用广义梯度近似(GGA)的密度泛函理论(DFT)(DFT-GGA)对Co-Pd催化剂上CH_4/CO_2两步法合成乙酸反应中CO_2与金属表面物种M-H(M=Co, Pd)和Pd-CH_3的插入反应机理进行了研究, 给出了CO_2与M-H和Pd-CH_3的插入反应机理. 计算结果表明, 在CO_2与M-H和Pd-CH_3相互作用的4个反应路径中, 反应以CO_2与Co-H 作用生成产物HCOO-Co为动力学优先路径, 但由于HCOO以双齿形式与金属Co结合, 其结合能较大, 导致HCOO在金属表面不易脱附, 故较难形成甲酸;反应生成H_3CCOO-Pd产物路径次之, H_3CCOO和Pd之间结合能较小, H_3CCOO容易脱附形成主产物乙酸;生成H_3COOC-Pd反应为动力学最不利路径, 故甲酸甲酯为动力学禁阻产物;计算结果与实验结果吻合得很好.
採用廣義梯度近似(GGA)的密度汎函理論(DFT)(DFT-GGA)對Co-Pd催化劑上CH_4/CO_2兩步法閤成乙痠反應中CO_2與金屬錶麵物種M-H(M=Co, Pd)和Pd-CH_3的插入反應機理進行瞭研究, 給齣瞭CO_2與M-H和Pd-CH_3的插入反應機理. 計算結果錶明, 在CO_2與M-H和Pd-CH_3相互作用的4箇反應路徑中, 反應以CO_2與Co-H 作用生成產物HCOO-Co為動力學優先路徑, 但由于HCOO以雙齒形式與金屬Co結閤, 其結閤能較大, 導緻HCOO在金屬錶麵不易脫附, 故較難形成甲痠;反應生成H_3CCOO-Pd產物路徑次之, H_3CCOO和Pd之間結閤能較小, H_3CCOO容易脫附形成主產物乙痠;生成H_3COOC-Pd反應為動力學最不利路徑, 故甲痠甲酯為動力學禁阻產物;計算結果與實驗結果吻閤得很好.
채용엄의제도근사(GGA)적밀도범함이론(DFT)(DFT-GGA)대Co-Pd최화제상CH_4/CO_2량보법합성을산반응중CO_2여금속표면물충M-H(M=Co, Pd)화Pd-CH_3적삽입반응궤리진행료연구, 급출료CO_2여M-H화Pd-CH_3적삽입반응궤리. 계산결과표명, 재CO_2여M-H화Pd-CH_3상호작용적4개반응로경중, 반응이CO_2여Co-H 작용생성산물HCOO-Co위동역학우선로경, 단유우HCOO이쌍치형식여금속Co결합, 기결합능교대, 도치HCOO재금속표면불역탈부, 고교난형성갑산;반응생성H_3CCOO-Pd산물로경차지, H_3CCOO화Pd지간결합능교소, H_3CCOO용역탈부형성주산물을산;생성H_3COOC-Pd반응위동역학최불리로경, 고갑산갑지위동역학금조산물;계산결과여실험결과문합득흔호.
The insertion reactions of CO_2 with M-H (M=Co, Pd) and Pd-CH_3 were systematically investigated by the first-principle DFT-GGA calculations. The mechanisms of CO_2 reacting with M-H and Pd-CH_3 were obtained for the direct synthesis of acetic acid from CH_4/CO_2 by a two-step reaction sequence on Co-Pd catalysts. The calculation result showed that the pathway that CO_2 inserts into Co-H bonds forming HCOO-Co was the most advantageous in dynamics for all four designed reaction paths. However, HCOO was linked with Co in bi-dentate form, whose binding energy was very large, so the desorption of HCOO hardly taken place and formic acid was little produced. Meanwhile, the pathway that CO_2 inserts into Pd-CH_3 bonds forming H_3CCOO-Pd was secondly preferential pathway favored in dynamics. The binding energy between H_3CCOO and Pd was small, and desorption of H_3CCOO easily occurred, so the main product was acetic acid. While methyl formate was inhibited by dynamics. The calculated result was in accordance with the experimental facts.