计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2009年
12期
1553-1558
,共6页
郭蓉%汤宏胜%葛忠学%王伯周%李华
郭蓉%湯宏勝%葛忠學%王伯週%李華
곽용%탕굉성%갈충학%왕백주%리화
神经网络偏最小二乘%主成分分析%含能材料%爆轰性能
神經網絡偏最小二乘%主成分分析%含能材料%爆轟性能
신경망락편최소이승%주성분분석%함능재료%폭굉성능
netural network partial least squares%principal component analysis%energetic materials%detonation relationship
运用神经网络偏最小二乘分别与遗传算法和主成分分析相结合,以含能材料的结构描述符和爆轰性能等参数,建立了"分子结构-爆轰性能"之间的定量关系预测模型,并对30种含能材料的密度和理论爆速进行了预测,其相对误差均在5%以下.表明这种方法为新型含能材料分子设计和爆轰性能预估提供了新的方法和手段.
運用神經網絡偏最小二乘分彆與遺傳算法和主成分分析相結閤,以含能材料的結構描述符和爆轟性能等參數,建立瞭"分子結構-爆轟性能"之間的定量關繫預測模型,併對30種含能材料的密度和理論爆速進行瞭預測,其相對誤差均在5%以下.錶明這種方法為新型含能材料分子設計和爆轟性能預估提供瞭新的方法和手段.
운용신경망락편최소이승분별여유전산법화주성분분석상결합,이함능재료적결구묘술부화폭굉성능등삼수,건립료"분자결구-폭굉성능"지간적정량관계예측모형,병대30충함능재료적밀도화이론폭속진행료예측,기상대오차균재5%이하.표명저충방법위신형함능재료분자설계화폭굉성능예고제공료신적방법화수단.
The methods have been developed for model construction of quantitative structure-detonation relationship by combining netural network partial least squares with genetic algorithms and principal component analysis respectively. The model can predict the density and detonation velocity of 30 explosives, all the relative errors are less than 5%. The result shows that it offers novel method to design molecules and estimate the detonation relationship performance for new energetic materials.