国际生物医学工程杂志
國際生物醫學工程雜誌
국제생물의학공정잡지
INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING
2008年
5期
261-264
,共4页
蛋白质二级结构%预测%BP神经网络%疏水性%位置特异性得分矩阵
蛋白質二級結構%預測%BP神經網絡%疏水性%位置特異性得分矩陣
단백질이급결구%예측%BP신경망락%소수성%위치특이성득분구진
Protein secondary structure%Prediction%BP neural network%Hydrophobicity%Positionspecific scoring matrix
目的 预测蛋白质二级结构是预测其空间结构的基础,提高蛋白质二级结构的预测率非常重要.方法在本研究中,结合氨基酸的疏水性与含有进化信息的位置特异性得分矩阵(PSSM),构建BP神经网络.本文的数据来源于蛋白质数据集合CB513,在此集合中去除氨基酸个数小于30及含有X、B的序列,共492条蛋白序列作为数据集.通过4-交互验证预测准确率.在本研究中,将蛋白质二级结构预测的结果与仅用PSSM作为输入的神经网络预测相比较.结果 采用疏水性与进化信息相结合作为输入所构建的神经网络对α螺旋的预测准确率有了较大的提高,达到近79%,敏感性及特异性分别达到79%及91%.同时对二级结构总体预测准确率达到75.96%.结论 此种方法构建的BP网络能提高蛋白质二级结构,尤其是α螺旋的预测准确率.
目的 預測蛋白質二級結構是預測其空間結構的基礎,提高蛋白質二級結構的預測率非常重要.方法在本研究中,結閤氨基痠的疏水性與含有進化信息的位置特異性得分矩陣(PSSM),構建BP神經網絡.本文的數據來源于蛋白質數據集閤CB513,在此集閤中去除氨基痠箇數小于30及含有X、B的序列,共492條蛋白序列作為數據集.通過4-交互驗證預測準確率.在本研究中,將蛋白質二級結構預測的結果與僅用PSSM作為輸入的神經網絡預測相比較.結果 採用疏水性與進化信息相結閤作為輸入所構建的神經網絡對α螺鏇的預測準確率有瞭較大的提高,達到近79%,敏感性及特異性分彆達到79%及91%.同時對二級結構總體預測準確率達到75.96%.結論 此種方法構建的BP網絡能提高蛋白質二級結構,尤其是α螺鏇的預測準確率.
목적 예측단백질이급결구시예측기공간결구적기출,제고단백질이급결구적예측솔비상중요.방법재본연구중,결합안기산적소수성여함유진화신식적위치특이성득분구진(PSSM),구건BP신경망락.본문적수거래원우단백질수거집합CB513,재차집합중거제안기산개수소우30급함유X、B적서렬,공492조단백서렬작위수거집.통과4-교호험증예측준학솔.재본연구중,장단백질이급결구예측적결과여부용PSSM작위수입적신경망락예측상비교.결과 채용소수성여진화신식상결합작위수입소구건적신경망락대α라선적예측준학솔유료교대적제고,체도근79%,민감성급특이성분별체도79%급91%.동시대이급결구총체예측준학솔체도75.96%.결론 차충방법구건적BP망락능제고단백질이급결구,우기시α라선적예측준학솔.
Objective Since predicting protein secondary structure is the basis of predicting protein spacial structure, it is important to improve the prediction accuracy of secondary structure. Methods A two-stage BP neural network was constructed based on the method of combining hydrophobicity of amino acid residues with PSSM which contains evolution information. CB513 dataset was employed in our study. After excluding the protein chains containing X,B and those with sequence length shorter than 30 amino acids, 492 protein chains in the dataset were used. The results of protein secondary structure prediction of our study were compared with those from the networks using only PSSN as their inputs. Accuracy of the network was tested by 4-fold cross-validation. Results In our study, α-helix was predicted with an averaged accuracy of nearly 79%, sensitivity of 79% and specificity of 91%. Total prediction accuracy of secondary structure reached 75.96%, which was higher than that of only using PSSM as input. Conclusion The new method developed can better predict protein secondary structure, especially α-helix with a higher accuracy.