长治学院学报
長治學院學報
장치학원학보
JOURNAL OF CHANGZHI UNIVERSITY
2006年
5期
1-3
,共3页
自同构群%自正交码%自对偶码
自同構群%自正交碼%自對偶碼
자동구군%자정교마%자대우마
automorphism group%self-orthogonal code%self-dualcode
在文献[2]中证明了线性变换群GL3(2)是汉明码A7的自同构群.文章证明了投射特殊线性群PSL2(7)(定义在有限域GF(7)上)和线性变换群GL3(2)是同构的.同时,得出了群PSL3(2)也是汉明码(-A)7的自同构群.
在文獻[2]中證明瞭線性變換群GL3(2)是漢明碼A7的自同構群.文章證明瞭投射特殊線性群PSL2(7)(定義在有限域GF(7)上)和線性變換群GL3(2)是同構的.同時,得齣瞭群PSL3(2)也是漢明碼(-A)7的自同構群.
재문헌[2]중증명료선성변환군GL3(2)시한명마A7적자동구군.문장증명료투사특수선성군PSL2(7)(정의재유한역GF(7)상)화선성변환군GL3(2)시동구적.동시,득출료군PSL3(2)야시한명마(-A)7적자동구군.
It was proved that linear transformation group GL3(2) is an automorphism group of Hamming Code (-A)7 in paper [2]. In this paper, We will prove that two ranks projective special linear group PSL2(7) over finite field GF(7) and linear transformation group GL3(2) are isomorphism. Then we get a conclusion that the group PSL3(2) is also an automorphism group of Hamming code (-A)7.