应用数学与计算数学学报
應用數學與計算數學學報
응용수학여계산수학학보
COMMUNICATION ON APPLIED MATHEMATICS AND COMPUTATION
2009年
2期
111-120
,共10页
广义Taylor公式%微分变换方法%序列分数阶导数%Riemann-Liouville分数阶导数
廣義Taylor公式%微分變換方法%序列分數階導數%Riemann-Liouville分數階導數
엄의Taylor공식%미분변환방법%서렬분수계도수%Riemann-Liouville분수계도수
generalized Taylor's formula%differential transform method%sequential fractional derivative%Riemann-Liouville fractional derivative
本文在Riemann-Liouville分数阶导数的广义Taylor公式的基础上,建立了求解Riemann-Liouville型分数阶微分方程的微分变换方法.本文所建立的基于Riemann-Liouville分数阶导数微分变换方法给求解Riemann-Liouville分数阶导数的微分方程提供了一种新工具.
本文在Riemann-Liouville分數階導數的廣義Taylor公式的基礎上,建立瞭求解Riemann-Liouville型分數階微分方程的微分變換方法.本文所建立的基于Riemann-Liouville分數階導數微分變換方法給求解Riemann-Liouville分數階導數的微分方程提供瞭一種新工具.
본문재Riemann-Liouville분수계도수적엄의Taylor공식적기출상,건립료구해Riemann-Liouville형분수계미분방정적미분변환방법.본문소건립적기우Riemann-Liouville분수계도수미분변환방법급구해Riemann-Liouville분수계도수적미분방정제공료일충신공구.
Based on generalized Taylor's formula involving the Riemann-Liouville fractional derivative, the new differential transformation for the fractional differential equation with Riemann-Liouville derivative is established and applied to solving the equa-tion with Ruemann-Liouville derivative. The illustrative examples show that the derived method is a effective one for solving such a kind of fractional differential equations.