电工技术学报
電工技術學報
전공기술학보
TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY
2006年
9期
81-87
,共7页
选择谐波消除%多段式模式%同伦算法%级联H桥
選擇諧波消除%多段式模式%同倫算法%級聯H橋
선택해파소제%다단식모식%동륜산법%급련H교
Selective harmonic elimination%multi-pattern%homotopy algorithm%cascaded H-bridge
级联多电平逆变器采用阶梯波调制策略虽然能够产生所需要的基波电压而又不产生低次谐波,但该方法只能在很高的调制比下才能应用,而在中低调制比下不存在具有实际意义的解.为了解决这个调制宽度问题,提出了用多段调制模式的办法来计算级联多电平逆变器的开关角度.本文中利用四段式的方法证明了在中低调制比下,具有实际意义的开关角度仍然存在.针对特定消谐方程组的求解,本文提出一种高效的同伦迭代计算方法,通过将非线性方程组转化为偏微分方程组,然后采用龙格库塔法对其进行求解,最后将该值作为迭代算法的初值继续计算即可求得.对比其他的迭代法,该方法具有很宽的收敛范围.实验结果证明了这种多段式调制模式以及同伦迭代算法的可行性和正确性.
級聯多電平逆變器採用階梯波調製策略雖然能夠產生所需要的基波電壓而又不產生低次諧波,但該方法隻能在很高的調製比下纔能應用,而在中低調製比下不存在具有實際意義的解.為瞭解決這箇調製寬度問題,提齣瞭用多段調製模式的辦法來計算級聯多電平逆變器的開關角度.本文中利用四段式的方法證明瞭在中低調製比下,具有實際意義的開關角度仍然存在.針對特定消諧方程組的求解,本文提齣一種高效的同倫迭代計算方法,通過將非線性方程組轉化為偏微分方程組,然後採用龍格庫塔法對其進行求解,最後將該值作為迭代算法的初值繼續計算即可求得.對比其他的迭代法,該方法具有很寬的收斂範圍.實驗結果證明瞭這種多段式調製模式以及同倫迭代算法的可行性和正確性.
급련다전평역변기채용계제파조제책략수연능구산생소수요적기파전압이우불산생저차해파,단해방법지능재흔고적조제비하재능응용,이재중저조제비하불존재구유실제의의적해.위료해결저개조제관도문제,제출료용다단조제모식적판법래계산급련다전평역변기적개관각도.본문중이용사단식적방법증명료재중저조제비하,구유실제의의적개관각도잉연존재.침대특정소해방정조적구해,본문제출일충고효적동륜질대계산방법,통과장비선성방정조전화위편미분방정조,연후채용룡격고탑법대기진행구해,최후장해치작위질대산법적초치계속계산즉가구득.대비기타적질대법,해방법구유흔관적수렴범위.실험결과증명료저충다단식조제모식이급동륜질대산법적가행성화정학성.
This paper presents a multi-pattern method which is employed to compute the switching angles in a multilevel converter so as to produce the required fundamental voltage while at the same time not generate the selective harmonics. Using a staircase fundamental switching scheme, previous work has shown that it is possible to produce solutions only for higher ranges of the modulation index. Here four patterns are shown to extend the lower range of modulation indices for which such switching angles still exist. A unified approach called homotopy algorithm is presented to solve the SHE equations for all of the various switching patterns. The nonlinear and transcendental equations with homotopy algorithm from mathematical point is analyzed mainly in this paper. In particular, it is shown that all patterns require solving the same set of equations where each pattern is distinguished by the location of the roots of SHE equations. In contrast to iterative numerical techniques, the approach here can produce all solutions in a large convergence extent. The experimental results verify the precision of the multi-pattern method.