哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2010年
2期
237-242
,共6页
马华%叶以正%王永生%张岩
馬華%葉以正%王永生%張巖
마화%협이정%왕영생%장암
可编程滤波器%自顶向下%优化%工艺漂移%光信号处理器
可編程濾波器%自頂嚮下%優化%工藝漂移%光信號處理器
가편정려파기%자정향하%우화%공예표이%광신호처리기
programmable band-pass filter%top-down%optimizing%process variation%OSP
为了克服集成电路制造过程中工艺变化引起滤波器中心频率的漂移,设计了一个可编程校准的OTA-C带通滤波器电路.在Top-Down的设计过程中,提出了滤波器电路设计的高层次优化方法,该方法主要包括设计空间的行为描述、约束方程描述、确定优化目标及数学求解得到较优的设计.利用该方法设计了光信号处理器中带通滤波器的电路,并且主要优化了传递函数、可编程数字信号宽度及可编程电流源设计等.仿真结果表明,该滤波器的中心频率设计标准值为37.8 kHz,当工艺漂移引起中心频率±50%的变化时,可校准系数变化范围为199%~65.6%,能够满足可编程校准的要求.
為瞭剋服集成電路製造過程中工藝變化引起濾波器中心頻率的漂移,設計瞭一箇可編程校準的OTA-C帶通濾波器電路.在Top-Down的設計過程中,提齣瞭濾波器電路設計的高層次優化方法,該方法主要包括設計空間的行為描述、約束方程描述、確定優化目標及數學求解得到較優的設計.利用該方法設計瞭光信號處理器中帶通濾波器的電路,併且主要優化瞭傳遞函數、可編程數字信號寬度及可編程電流源設計等.倣真結果錶明,該濾波器的中心頻率設計標準值為37.8 kHz,噹工藝漂移引起中心頻率±50%的變化時,可校準繫數變化範圍為199%~65.6%,能夠滿足可編程校準的要求.
위료극복집성전로제조과정중공예변화인기려파기중심빈솔적표이,설계료일개가편정교준적OTA-C대통려파기전로.재Top-Down적설계과정중,제출료려파기전로설계적고층차우화방법,해방법주요포괄설계공간적행위묘술、약속방정묘술、학정우화목표급수학구해득도교우적설계.이용해방법설계료광신호처리기중대통려파기적전로,병차주요우화료전체함수、가편정수자신호관도급가편정전류원설계등.방진결과표명,해려파기적중심빈솔설계표준치위37.8 kHz,당공예표이인기중심빈솔±50%적변화시,가교준계수변화범위위199%~65.6%,능구만족가편정교준적요구.
In order to immunize against process variation, a programmable operational transconductance amplifier (OTA)-C bandpass filter was proposed that can correct central frequency deviations caused by process variations. This high-level optimization method was formulated as a top-down design. The method used four steps starting with behavioral modeling of the performance space. It then established constraint equations. Next, the objectives of optimization were raised. The final step involved calculating and achieving an optimal solution. The programmable band-pass filter circuit was designed for optical signal processing by applying this method. Subsequently, the transfer function of the filter, data capacity of the program, and the programmable current source were optimized. Simulation results for the proposed circuit showed a calibrated value for the center frequency of 37.8 kHz. When the center frequency varied 50% to 150% from its proper frequency due to process variations, the central frequency was corrected by the programming calibration coefficient, adjusting the frequency 199% to 65.6%.