计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2009年
22期
26-28
,共3页
孙焘%冯林%郑虎%高成锴
孫燾%馮林%鄭虎%高成鍇
손도%풍림%정호%고성개
最大熵投票模型%k-mean聚类%高维时间序列%无监督分割
最大熵投票模型%k-mean聚類%高維時間序列%無鑑督分割
최대적투표모형%k-mean취류%고유시간서렬%무감독분할
max entropy voting model%k-mean clustering%high-dimension time series%unsupervised segmentation
通过高维时间序列分割可以创建高级符号表示.提出一种针对高维时间序列的无监督分割算法,用于解决高维数据符号化的预处理问题.该算法实现对高维数据的聚类,应用最大熵投票模型进行序列分割.实验结果表明,其平均查全率和查准率分别为0.86和0.88,且整体性能优于主成分分析算法和概率主成分分析算法.
通過高維時間序列分割可以創建高級符號錶示.提齣一種針對高維時間序列的無鑑督分割算法,用于解決高維數據符號化的預處理問題.該算法實現對高維數據的聚類,應用最大熵投票模型進行序列分割.實驗結果錶明,其平均查全率和查準率分彆為0.86和0.88,且整體性能優于主成分分析算法和概率主成分分析算法.
통과고유시간서렬분할가이창건고급부호표시.제출일충침대고유시간서렬적무감독분할산법,용우해결고유수거부호화적예처리문제.해산법실현대고유수거적취류,응용최대적투표모형진행서렬분할.실험결과표명,기평균사전솔화사준솔분별위0.86화0.88,차정체성능우우주성분분석산법화개솔주성분분석산법.
Through the high-dimension segmentation, the high-level symbol expression can be created. This paper proposes an unsupervised segmentation algorithm for high-dimension time series. This method can solve the pretreatmant problem of high-dimension symbolization. It realizes the clustering of high-dimension data, and uses max entropy voting model to do series segmentation. Experimental results show that the algorithm's average recall ratio and precision ration are respectively 0.86 and 0.88. Its whole performance is better than Principal Component Analysis(PCA) algorithm and Probability Principal Component Analysis(PPCA) algorithm.