中华放射学杂志
中華放射學雜誌
중화방사학잡지
Chinese Journal of Radiology
2009年
5期
544-550
,共7页
余日胜%孙建忠%丁文洪%徐秀芳%王志康
餘日勝%孫建忠%丁文洪%徐秀芳%王誌康
여일성%손건충%정문홍%서수방%왕지강
肝%磷放射性同位素%磁共振波谱学%动物实验
肝%燐放射性同位素%磁共振波譜學%動物實驗
간%린방사성동위소%자공진파보학%동물실험
Liver%Phosphorus radioisotope%Magnetic resonance spectroscopy%Animal experimentation
目的 探讨MR二维化学位移成像(2D CSI)在家兔肝脏磷代谢物相对量检测中的重复能力及其影响因素.方法 对浓度为0.05 mol/L的500 ml磷酸盐(NaH2PO4)溶液体模及1只家兔在1 d内分别进行30次并于次日重复30次2D CSI MR扫描,分析MR机的稳定性及同一个体磷代谢物的重复能力;对30只家兔在2 d内各行1次31P MRS扫描,分析同一群体磷代谢物的重复能力.在每一次家兔检测前均先行体模31P MRS扫描,测得校正系数,对不同时间段内所检测得的家兔磷代谢物相对值进行校正,获得校正相对值,采用变异系数分析各代谢物相对最检测误差,并采用t检验进行比较.结果 (1)体模检测:2 d内磷酸盐体模输测误差分别为4.92%和5.12%,2 d内磷化合物相对值分别为16.68±0.82和16.56±0.85,差异无统计学意义(t=0.665,P>0.05).(2)同一家兔检测:各磷化合物的检测误筹在8.04%~34.13%之间,其中以β-ATP重复性最好,误差均在10%以内;不同2 d 2次检测磷酸单脂(PME)分别为0.88±0.28和0.88±0.30,磷酸二脂(PDE)分别为4.35±0.66和4.35±0.66,无机磷(Pi)分别为0.95±0.30和0.97±0.28,α-ATP分别为5.58±0.60和5.61±0.61,β-ATP分别为2.70±0.22和2.71±0.22,γ-ATP分别为2.20±0.63和2.18±0.44,差异均无统计学意义(P值均>0.05).(3)同一群体家兔检测:各磷化合物的检测误差在8.48%~36.21%之间,其中以β-ATP重复性最好,误差均在10%以内,2次检测PME分别为0.84±0.30和0.79±0.28,PDE分别为4.29±0.72和3.94±0.84,Pi分别为0.91±0.28和0.92±0.31,α-ATP分别为5.65±0.66和5.36±0.60,β-ATP分别为2.71±0.23和2.66±0.25,γ-ATP分别为2.07±0.29和1.99±0.37,差异均无统计学意义(P值均>0.05).结论 在各磷化合物中,β-ATP相对量误差小,将它作为评价实验性肝病的指标最可靠.家兔的2D CSI肝脏31P MRS技术受多种因素影响.
目的 探討MR二維化學位移成像(2D CSI)在傢兔肝髒燐代謝物相對量檢測中的重複能力及其影響因素.方法 對濃度為0.05 mol/L的500 ml燐痠鹽(NaH2PO4)溶液體模及1隻傢兔在1 d內分彆進行30次併于次日重複30次2D CSI MR掃描,分析MR機的穩定性及同一箇體燐代謝物的重複能力;對30隻傢兔在2 d內各行1次31P MRS掃描,分析同一群體燐代謝物的重複能力.在每一次傢兔檢測前均先行體模31P MRS掃描,測得校正繫數,對不同時間段內所檢測得的傢兔燐代謝物相對值進行校正,穫得校正相對值,採用變異繫數分析各代謝物相對最檢測誤差,併採用t檢驗進行比較.結果 (1)體模檢測:2 d內燐痠鹽體模輸測誤差分彆為4.92%和5.12%,2 d內燐化閤物相對值分彆為16.68±0.82和16.56±0.85,差異無統計學意義(t=0.665,P>0.05).(2)同一傢兔檢測:各燐化閤物的檢測誤籌在8.04%~34.13%之間,其中以β-ATP重複性最好,誤差均在10%以內;不同2 d 2次檢測燐痠單脂(PME)分彆為0.88±0.28和0.88±0.30,燐痠二脂(PDE)分彆為4.35±0.66和4.35±0.66,無機燐(Pi)分彆為0.95±0.30和0.97±0.28,α-ATP分彆為5.58±0.60和5.61±0.61,β-ATP分彆為2.70±0.22和2.71±0.22,γ-ATP分彆為2.20±0.63和2.18±0.44,差異均無統計學意義(P值均>0.05).(3)同一群體傢兔檢測:各燐化閤物的檢測誤差在8.48%~36.21%之間,其中以β-ATP重複性最好,誤差均在10%以內,2次檢測PME分彆為0.84±0.30和0.79±0.28,PDE分彆為4.29±0.72和3.94±0.84,Pi分彆為0.91±0.28和0.92±0.31,α-ATP分彆為5.65±0.66和5.36±0.60,β-ATP分彆為2.71±0.23和2.66±0.25,γ-ATP分彆為2.07±0.29和1.99±0.37,差異均無統計學意義(P值均>0.05).結論 在各燐化閤物中,β-ATP相對量誤差小,將它作為評價實驗性肝病的指標最可靠.傢兔的2D CSI肝髒31P MRS技術受多種因素影響.
목적 탐토MR이유화학위이성상(2D CSI)재가토간장린대사물상대량검측중적중복능력급기영향인소.방법 대농도위0.05 mol/L적500 ml린산염(NaH2PO4)용액체모급1지가토재1 d내분별진행30차병우차일중복30차2D CSI MR소묘,분석MR궤적은정성급동일개체린대사물적중복능력;대30지가토재2 d내각행1차31P MRS소묘,분석동일군체린대사물적중복능력.재매일차가토검측전균선행체모31P MRS소묘,측득교정계수,대불동시간단내소검측득적가토린대사물상대치진행교정,획득교정상대치,채용변이계수분석각대사물상대최검측오차,병채용t검험진행비교.결과 (1)체모검측:2 d내린산염체모수측오차분별위4.92%화5.12%,2 d내린화합물상대치분별위16.68±0.82화16.56±0.85,차이무통계학의의(t=0.665,P>0.05).(2)동일가토검측:각린화합물적검측오주재8.04%~34.13%지간,기중이β-ATP중복성최호,오차균재10%이내;불동2 d 2차검측린산단지(PME)분별위0.88±0.28화0.88±0.30,린산이지(PDE)분별위4.35±0.66화4.35±0.66,무궤린(Pi)분별위0.95±0.30화0.97±0.28,α-ATP분별위5.58±0.60화5.61±0.61,β-ATP분별위2.70±0.22화2.71±0.22,γ-ATP분별위2.20±0.63화2.18±0.44,차이균무통계학의의(P치균>0.05).(3)동일군체가토검측:각린화합물적검측오차재8.48%~36.21%지간,기중이β-ATP중복성최호,오차균재10%이내,2차검측PME분별위0.84±0.30화0.79±0.28,PDE분별위4.29±0.72화3.94±0.84,Pi분별위0.91±0.28화0.92±0.31,α-ATP분별위5.65±0.66화5.36±0.60,β-ATP분별위2.71±0.23화2.66±0.25,γ-ATP분별위2.07±0.29화1.99±0.37,차이균무통계학의의(P치균>0.05).결론 재각린화합물중,β-ATP상대량오차소,장타작위평개실험성간병적지표최가고.가토적2D CSI간장31P MRS기술수다충인소영향.
Objective To investigate the reproducibility and influencing factors of relative quantification of phosphorus metabolites with two-dimensional chemical shift imaging (2D CSI) in rabbit liver. Methods Using 2D CSI MRS, 500 ml phosphate (NaH2PO4) solution phantom with 0. 05 mol/E concentration and one healthy rabbit were scanned 30 times respectively in one day and rescanned 30 times in the next day, and the stability of MR scanner and reproducibility of within-run and between-days in the same individual were analyzed. Each of thirty rabbits was scanned and rescanned one time respectively in different days, and the reproducibility of between-days in one group was analyzed. The data were statistically analyzed with t tests. Results (1) Phosphate solution phantom had a good reproducibility of within-run with the coefficient variation (CV) of 4. 92% and 5. 12% respectively in different two days. No significant change of phosphorus metabolites was detected in between-days, which was 16. 68 ± 0. 82 and 16. 56 ± 0. 85 respectively(t = 0. 665, P > 0. 05 ). (2) The CV of metabolites in one healthy rabbit ranged from 8. 04% to 34. 13%. Among the metabolites, β-ATP had the best reproducibility with the CV less than 10%. PME was 0. 88 ± 0. 28 and 0. 88 ± 0. 30, PDE was 4. 35 ± 0. 66 and 4. 35 ± 0, 66, Pi was 0. 95 ± 0.30 and 0.97±0.28, α-ATP was 5.58±0.60 and 5.61±0.61, β-ATP was 2.70±0.22 and 2.71± 0. 22, γ-ATP was 2. 20±0. 63 and 2. 18±0.44 respectively, no significant changes of metabolites were detected in between-days( P >0. 05 ). (3) The CV of metabolites in 30 healthy rabbits ranged from 8.48% to 36. 21%. Among the metabelites, β-ATP had the best reproducibility with CV less than 10%. PME was 0. 84 ± 0. 30 and 0. 79 ± 0. 28, PDE was 4. 29 ± 0.72 and 3.94 ± 0. 84, Pi was 0. 91 ± 0. 28 and 0. 92 ± 0. 31, α-ATP was 5.65±0. 66 and 5. 36±0. 60, β-ATP was 2. 71±0. 23 and 2. 66±0. 25, γ-ATP was 2. 07±0. 29 and 1.99±0. 37 respectively, no significant changes of metabolites were detected in between-days (P > 0. 05). Conclusions The relative quantification of hepatic β-ATP may be most reliable among the phosphorus metabolites for rabbit liver because of its good reproducibility and small CV. The quantification of phosphorus metabolites by 31p MRS with 2D CSI in rabbit liver is affected by many factors.