应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2007年
2期
307-315
,共9页
倒向随机微分方程%Lévy过程%Teugel鞅
倒嚮隨機微分方程%Lévy過程%Teugel鞅
도향수궤미분방정%Lévy과정%Teugel앙
Backward stochastic differential equation%Lévy process%Teugel's martingale
本文研究了由满足某种矩条件下Lévy过程相应的Teugel鞅及与之独立的布朗运动驱动的倒向随机微分方程,给出了飘逸系数满足非Lipschitz条件下解的存在唯一及稳定性结论.解的存在性是通过Picard迭代法给出的.解的L2收敛性是在飘逸系数弱于L2收敛意义下所得到的.
本文研究瞭由滿足某種矩條件下Lévy過程相應的Teugel鞅及與之獨立的佈朗運動驅動的倒嚮隨機微分方程,給齣瞭飄逸繫數滿足非Lipschitz條件下解的存在唯一及穩定性結論.解的存在性是通過Picard迭代法給齣的.解的L2收斂性是在飄逸繫數弱于L2收斂意義下所得到的.
본문연구료유만족모충구조건하Lévy과정상응적Teugel앙급여지독립적포랑운동구동적도향수궤미분방정,급출료표일계수만족비Lipschitz조건하해적존재유일급은정성결론.해적존재성시통과Picard질대법급출적.해적L2수렴성시재표일계수약우L2수렴의의하소득도적.
We deal with backward stochastic differential equations (BSDEs in short) driven by independent Brownian motion. We derive the existence, uniqueness and stability of solutions for these equations under non-Lipschitz condition on the coefficients. And the existence of the solutions is obtained by a Picard-type iteration. The strong L2 convergence of solutions is derived under a weaker condition than the strong L2 convergence on the coefficients.