高技术通讯
高技術通訊
고기술통신
HIGH TECHNOLOGY LETTERS
2009年
6期
564-571
,共8页
李文法%段米毅%陈友%程学旗
李文法%段米毅%陳友%程學旂
리문법%단미의%진우%정학기
流分类%特征选择%改进的随机变异爬山(MRMHC)%线性支持向量机(LSVM)
流分類%特徵選擇%改進的隨機變異爬山(MRMHC)%線性支持嚮量機(LSVM)
류분류%특정선택%개진적수궤변이파산(MRMHC)%선성지지향량궤(LSVM)
flow classification%feature selection%modified random mutation hill climbing (MRMHC)%linear support vector machine(LSVM)
提出了一种构建轻量级的IP流分类器的wrapper型特征选择算法MRMHC-LSVM.该算法采用改进的随机变异爬山(MRMHC)搜索策略对特征子集空间进行随机搜索,然后利用提供的数据在无约束优化线性支持向量机(LSVM)上的分类错误率作为特征子集的评价标准来获取最优特征子集.在IP流数据集上进行了大量的实验,实验结果表明基于MRMHC-LSVM的流分类器在不影响分类准确度的情况下能够提高检测速度,与当前典型的流分类器NBK-FCBF相比,基于MRMHC-LSVM的IP流分类器具有更小的计算复杂度与更高的检测率.
提齣瞭一種構建輕量級的IP流分類器的wrapper型特徵選擇算法MRMHC-LSVM.該算法採用改進的隨機變異爬山(MRMHC)搜索策略對特徵子集空間進行隨機搜索,然後利用提供的數據在無約束優化線性支持嚮量機(LSVM)上的分類錯誤率作為特徵子集的評價標準來穫取最優特徵子集.在IP流數據集上進行瞭大量的實驗,實驗結果錶明基于MRMHC-LSVM的流分類器在不影響分類準確度的情況下能夠提高檢測速度,與噹前典型的流分類器NBK-FCBF相比,基于MRMHC-LSVM的IP流分類器具有更小的計算複雜度與更高的檢測率.
제출료일충구건경량급적IP류분류기적wrapper형특정선택산법MRMHC-LSVM.해산법채용개진적수궤변이파산(MRMHC)수색책략대특정자집공간진행수궤수색,연후이용제공적수거재무약속우화선성지지향량궤(LSVM)상적분류착오솔작위특정자집적평개표준래획취최우특정자집.재IP류수거집상진행료대량적실험,실험결과표명기우MRMHC-LSVM적류분류기재불영향분류준학도적정황하능구제고검측속도,여당전전형적류분류기NBK-FCBF상비,기우MRMHC-LSVM적IP류분류기구유경소적계산복잡도여경고적검측솔.
This paper proposes a wrapper feature selection algorithm MRMHC-LSVM aiming at modeling lightweight flow classifiers by using the modified random mutation hill climbing (MRMHC) approach as the search strategy to specify candidate subsets for evaluation and using the linear support vector machine (LSVM) algorithm as the wrapper approach to obtain the optimum feature subset. The feasibility of the algorithm was examined by conducting several experiments on flow datasets. The experimental results show that a classifier based on the proposed approach can greatly improve the computational performance without negative impact on the classification accuracy. Further more, this approach is able not only to have smaller resource consumption, but also to have higher classification accuracy than the Nave Bayes method with Kernel density estimation after Fast Correlation-Based Filter (NBK-FCBF).