光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2011年
11期
86-92
,共7页
图像融合%平稳小波变换%拉普拉斯能量%客观评价
圖像融閤%平穩小波變換%拉普拉斯能量%客觀評價
도상융합%평은소파변환%랍보랍사능량%객관평개
image fusion%stationary wavelet transforms%energy of Laplacian%objective evaluation
提出了一种基于平稳小波变换的多聚焦图像融合算法.首先对待融合图像进行平稳小波分解,得到图像尺寸相同的低频分量和高频分量,然后对低频分量使用拉普拉斯能量进行清晰度判断,对于高频分量,则先计算其各个尺度,不同方向高频分量的绝对值和,进而通过能量特征判断其清晰度,最后通过比较低频分量和高频分量清晰度决策图的相同和相异性得到融合图像.计算机仿真实验表明,本文算法得到的融合图像清晰度较好,熵、平均梯度、空间频率和互信息等客观评价指标值高于平均法和传统基于小波变换的图像融合算法,互信息量比文献[3]中的方法提高了约2.4倍,是一种有效的多聚焦图像融合算法.
提齣瞭一種基于平穩小波變換的多聚焦圖像融閤算法.首先對待融閤圖像進行平穩小波分解,得到圖像呎吋相同的低頻分量和高頻分量,然後對低頻分量使用拉普拉斯能量進行清晰度判斷,對于高頻分量,則先計算其各箇呎度,不同方嚮高頻分量的絕對值和,進而通過能量特徵判斷其清晰度,最後通過比較低頻分量和高頻分量清晰度決策圖的相同和相異性得到融閤圖像.計算機倣真實驗錶明,本文算法得到的融閤圖像清晰度較好,熵、平均梯度、空間頻率和互信息等客觀評價指標值高于平均法和傳統基于小波變換的圖像融閤算法,互信息量比文獻[3]中的方法提高瞭約2.4倍,是一種有效的多聚焦圖像融閤算法.
제출료일충기우평은소파변환적다취초도상융합산법.수선대대융합도상진행평은소파분해,득도도상척촌상동적저빈분량화고빈분량,연후대저빈분량사용랍보랍사능량진행청석도판단,대우고빈분량,칙선계산기각개척도,불동방향고빈분량적절대치화,진이통과능량특정판단기청석도,최후통과비교저빈분량화고빈분량청석도결책도적상동화상이성득도융합도상.계산궤방진실험표명,본문산법득도적융합도상청석도교호,적、평균제도、공간빈솔화호신식등객관평개지표치고우평균법화전통기우소파변환적도상융합산법,호신식량비문헌[3]중적방법제고료약2.4배,시일충유효적다취초도상융합산법.
A novel multi-focus image fusion algorithm is proposed on the basis of stationary wavelet transform without reconstruction.The original images to be fused are firstly decomposed by stationary wavelet transform.The low-frequency coefficients and high-frequency coefficients can be obtained.The clarity of low-frequency coefficients is estimated by the energy of Laplacian and the decision map can be acquired by comparing the energy of Laplacian.For the high-frequency coefficients at different resolution and different direction,the absolute value of these coefficients are summed firstly,and then the local region energy is used as the feature to get the high-frequency decision map.The fused image can be obtained by combining the low-frequency decision map and high-frequency decision map.The simulated results demonstrate that the proposed algorithm can get clearer image when compared with the average method,the traditional wavelet-based algorithm and some modified algorithm.The objective evaluation indices value,such as Shannon,average gradient,space frequency,standard deviation and mutual information,are improved compared with the average method and the traditional wavelet-based algorithm.Especially,the mutual information value computed by our algorithm is 2.4 times compared with the algorithm of Ref [3].Subjective observation and objective evaluation suggest that our algorithm is effective for multi-focus image fusion.