纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2009年
2期
147-154
,共8页
赵学增%李宁%褚巍%周法权%周瑞
趙學增%李寧%褚巍%週法權%週瑞
조학증%리저%저외%주법권%주서
纳米测量%线边缘粗糙度%原子力显微镜%平稳小波变换%多尺度分析
納米測量%線邊緣粗糙度%原子力顯微鏡%平穩小波變換%多呎度分析
납미측량%선변연조조도%원자력현미경%평은소파변환%다척도분석
nanometrology%line edge roughness (LER)%atomic force microscope(AFM)%stationary wavelet transform%multi-scale analysis
为了解决微电子制造技术中纳米尺度半导体刻线边缘粗糙度(line edge roughness,LER)的测量问题,笔者提出了基于平稳小波变换的线边缘粗糙度分析方法.首先,使用原子力显微镜测量硅刻线形貌,通过图像处理与阈值方法提取出线边缘粗糙度特征.然后采用基于平稳小波变换的多尺度分析确定线边缘粗糙度特征的能量分布,给出了线边缘粗糙度的多尺度表征参数,包括特征长度和粗糙度指数.仿真出具有不同粗糙程度的线轮廓,计算出其粗糙度指数分别为0.72和6.05,表明该方法可以有效地反映出线边缘的不规则程度,并提供直观的LER空间频率信息.对一组硅刻线的测量数据进行处理,得到其特征长度和粗糙度指数分别为44.56 nm和12.17.最后,采用该方法对使用3种不同探针和3组不同扫描间隔的测量数据分别进行分析,结果表明该方法可以有效地量化表征线边缘粗糙度.
為瞭解決微電子製造技術中納米呎度半導體刻線邊緣粗糙度(line edge roughness,LER)的測量問題,筆者提齣瞭基于平穩小波變換的線邊緣粗糙度分析方法.首先,使用原子力顯微鏡測量硅刻線形貌,通過圖像處理與閾值方法提取齣線邊緣粗糙度特徵.然後採用基于平穩小波變換的多呎度分析確定線邊緣粗糙度特徵的能量分佈,給齣瞭線邊緣粗糙度的多呎度錶徵參數,包括特徵長度和粗糙度指數.倣真齣具有不同粗糙程度的線輪廓,計算齣其粗糙度指數分彆為0.72和6.05,錶明該方法可以有效地反映齣線邊緣的不規則程度,併提供直觀的LER空間頻率信息.對一組硅刻線的測量數據進行處理,得到其特徵長度和粗糙度指數分彆為44.56 nm和12.17.最後,採用該方法對使用3種不同探針和3組不同掃描間隔的測量數據分彆進行分析,結果錶明該方法可以有效地量化錶徵線邊緣粗糙度.
위료해결미전자제조기술중납미척도반도체각선변연조조도(line edge roughness,LER)적측량문제,필자제출료기우평은소파변환적선변연조조도분석방법.수선,사용원자력현미경측량규각선형모,통과도상처리여역치방법제취출선변연조조도특정.연후채용기우평은소파변환적다척도분석학정선변연조조도특정적능량분포,급출료선변연조조도적다척도표정삼수,포괄특정장도화조조도지수.방진출구유불동조조정도적선륜곽,계산출기조조도지수분별위0.72화6.05,표명해방법가이유효지반영출선변연적불규칙정도,병제공직관적LER공간빈솔신식.대일조규각선적측량수거진행처리,득도기특정장도화조조도지수분별위44.56 nm화12.17.최후,채용해방법대사용3충불동탐침화3조불동소묘간격적측량수거분별진행분석,결과표명해방법가이유효지양화표정선변연조조도.
To resolve the problem of measuring semiconductor line edge roughness (LER) in the microelectronic manufacturing technology, the analysis method for LER based on stationary wavelet transform was presented. First, the topography of Si line structure was measured using atomic force microscope (AFM), and the feature of LER was obtained by image processing and threshold method. Then the energy distribution of LER in each scale was determined by the multi-scale analysis based on stationary wavelet transform and the parameters of multi-scale characterization were given including the characteristic length I and the roughness exponent R. The simulation data of the line profile with different degree irregularities were generated, and the calculated roughness exponent R is 0.72 and 6.05, respectively. The results show that the roughness exponent R can reflect the irregularities of LER effectively and provide the straightforward spatial information of LER. Applying this multi-scale analysis to the measurement data of Si line, the characteristic length I and the roughness exponent R is 44.56 nm and 12.17, respectively. Finally, the experimental data analyses of three kinds of probes and three scanning intervals show that this analysis method can offer an effective quantitative characterization and analysis of LER.