光学精密工程
光學精密工程
광학정밀공정
OPTICS AND PRECISION ENGINEERING
2009年
12期
2990-2996
,共7页
贾倩倩%王伯雄%赵博华%罗秀芝
賈倩倩%王伯雄%趙博華%囉秀芝
가천천%왕백웅%조박화%라수지
多摄像机%线结构光%液晶靶标%全局标定%优化
多攝像機%線結構光%液晶靶標%全跼標定%優化
다섭상궤%선결구광%액정파표%전국표정%우화
multi-CCD camera%line-structured-light%LCD target%global calibration%optimization
为了对多CCD线结构光测量系统进行精确快速的全局标定,研究了一种基于液晶平面靶标的多CCD全局标定方法.首先,将液晶靶标放入光平面,在靶标上显示一系列特征点,然后进行各个CCD同步采集.通过时间序列对应特征点的图像坐标与靶标坐标,建立起像平面与靶标平面间的非线性模型,对形位关系已知的标准块进行测量,利用标准块的形位关系对像平面与靶标平面间的非线性模型进行优化,得到像平面与光平面间的映射关系,从而完成多CCD的全局标定.利用优化后的标定结果进行测量,结果表明,在自由曲面类物体的测量中,3个摄像机的数据拼接精度高,对标准块上特征点距离测量的RMS误差为0.217 mm,角度测量的绝对误差为±0.2°.该方法快速简便,适合现场操作,已在多CCD线结构光测量系统中得到了实际应用.
為瞭對多CCD線結構光測量繫統進行精確快速的全跼標定,研究瞭一種基于液晶平麵靶標的多CCD全跼標定方法.首先,將液晶靶標放入光平麵,在靶標上顯示一繫列特徵點,然後進行各箇CCD同步採集.通過時間序列對應特徵點的圖像坐標與靶標坐標,建立起像平麵與靶標平麵間的非線性模型,對形位關繫已知的標準塊進行測量,利用標準塊的形位關繫對像平麵與靶標平麵間的非線性模型進行優化,得到像平麵與光平麵間的映射關繫,從而完成多CCD的全跼標定.利用優化後的標定結果進行測量,結果錶明,在自由麯麵類物體的測量中,3箇攝像機的數據拼接精度高,對標準塊上特徵點距離測量的RMS誤差為0.217 mm,角度測量的絕對誤差為±0.2°.該方法快速簡便,適閤現場操作,已在多CCD線結構光測量繫統中得到瞭實際應用.
위료대다CCD선결구광측량계통진행정학쾌속적전국표정,연구료일충기우액정평면파표적다CCD전국표정방법.수선,장액정파표방입광평면,재파표상현시일계렬특정점,연후진행각개CCD동보채집.통과시간서렬대응특정점적도상좌표여파표좌표,건립기상평면여파표평면간적비선성모형,대형위관계이지적표준괴진행측량,이용표준괴적형위관계대상평면여파표평면간적비선성모형진행우화,득도상평면여광평면간적영사관계,종이완성다CCD적전국표정.이용우화후적표정결과진행측량,결과표명,재자유곡면류물체적측량중,3개섭상궤적수거병접정도고,대표준괴상특정점거리측량적RMS오차위0.217 mm,각도측량적절대오차위±0.2°.해방법쾌속간편,괄합현장조작,이재다CCD선결구광측량계통중득도료실제응용.
In order to realize the global calibration of a multiple CCDs line-structured-light measurement system, an approach to calibrate multiple CCDs based on a LCD target is investigated. Firstly, the LCD target is arranged at the position of light section,and the characteristic points are shown on the target one by one, then they are captured by cameras at the same time. The relationship between the target coordinate and the image coordinate is established in a nonlinear model through synchronizing pulses,and the model is optimized by the shape restraints of a calibrating part to get the mapping between the light sectioning plane and the image plane. So far,the global calibration is achieved successfully.Measurements of free surface show that the data from different CCDs are well spliced in the light sectioning plane, and measurements of the calibrating part show that the RMS error in a distance is 0.2 mm and the absolute error in a angle is ±0.2°. This method is easy to use, and has been applied to a multi-CCD 3D measurement system.