新疆大学学报(自然科学版)
新疆大學學報(自然科學版)
신강대학학보(자연과학판)
XINJIANG UNIVERSITY JOURNAL(NATURAL SCIENCE EDITION)
2010年
3期
276-279
,共4页
玛尔哈巴·霍加%艾尔肯·吾买尔
瑪爾哈巴·霍加%艾爾肯·吾買爾
마이합파·곽가%애이긍·오매이
Kronecker积%割集%点脆弱性参数
Kronecker積%割集%點脆弱性參數
Kronecker적%할집%점취약성삼수
Kronecker product%cut set%vertex vulnerability parameter
设G1和G2是两个图.G1和G2的Kronecker积G1×G2具有顶点集V(G1×G2)=V(G1)×V(G2),边集为E(G1×G2)={(u1,v1)(u2,v2):u1u2∈E(G1)且u1u2∈E(G1)}.在本文中,我们确定了两个完全图的Kronecker积Km×Kn(n≥m≥2且n≥3)的一些点脆弱性参数.
設G1和G2是兩箇圖.G1和G2的Kronecker積G1×G2具有頂點集V(G1×G2)=V(G1)×V(G2),邊集為E(G1×G2)={(u1,v1)(u2,v2):u1u2∈E(G1)且u1u2∈E(G1)}.在本文中,我們確定瞭兩箇完全圖的Kronecker積Km×Kn(n≥m≥2且n≥3)的一些點脆弱性參數.
설G1화G2시량개도.G1화G2적Kronecker적G1×G2구유정점집V(G1×G2)=V(G1)×V(G2),변집위E(G1×G2)={(u1,v1)(u2,v2):u1u2∈E(G1)차u1u2∈E(G1)}.재본문중,아문학정료량개완전도적Kronecker적Km×Kn(n≥m≥2차n≥3)적일사점취약성삼수.
Let G1 and G2 be two graphs. The Kronecker product G1×G2 of G1 and G2 has vertex set V(G1×G2) =V(G1)×V(G2) and edge set E(G1×G2) = {(u1,v1)(u2,v2):u1u2∈E(G1)and v1v2∈E(G2)}. In this paper, we determine some vertex vulnerability parameters of the Kronecker product of complete graphs Km×Kn for n≥m≥2 and n≥3.