光子学报
光子學報
광자학보
ACTA PHOTONICA SINICA
2010年
2期
243-246
,共4页
潘子军%赵建林%李恩普%周王民%姜碧强%吕全超%成振龙
潘子軍%趙建林%李恩普%週王民%薑碧彊%呂全超%成振龍
반자군%조건림%리은보%주왕민%강벽강%려전초%성진룡
光纤光栅(FBG)%压电陶瓷(PZT)%匹配光栅%温度补偿
光纖光柵(FBG)%壓電陶瓷(PZT)%匹配光柵%溫度補償
광섬광책(FBG)%압전도자(PZT)%필배광책%온도보상
Fiber Bragg grating (FBG)%Piezoelectric ceramic (PZT)%Matched grating%Temperature compensation
提出并实验验证了一种动态匹配光栅滤波系统的优化解调方法.在压电陶瓷驱动的动态匹配(光纤)光栅滤波解调系统中,一方面采用上升高压锯齿波,以消除压电陶瓷滞回效应;另一方面将压电陶瓷电压与伸长量关系的反函数作为锯齿波上升电压,以校正压电陶瓷的非线性;进而,为实现解调系统的温度补偿,引入一根中心波长保持不变的参考(光纤)光栅.在锯齿波上升过程中,匹配光栅与参考光栅和传感(光纤)光栅在不同时刻匹配,匹配时间差仅与传感光栅有关,而与解调系统温度无关.实验结果表明,优化后系统的线性度可提高2%,灵敏度与理论值的相对误差小于0.6%;在10~60℃范围内,该解调系统温度变化引起的相对误差小于1%.
提齣併實驗驗證瞭一種動態匹配光柵濾波繫統的優化解調方法.在壓電陶瓷驅動的動態匹配(光纖)光柵濾波解調繫統中,一方麵採用上升高壓鋸齒波,以消除壓電陶瓷滯迴效應;另一方麵將壓電陶瓷電壓與伸長量關繫的反函數作為鋸齒波上升電壓,以校正壓電陶瓷的非線性;進而,為實現解調繫統的溫度補償,引入一根中心波長保持不變的參攷(光纖)光柵.在鋸齒波上升過程中,匹配光柵與參攷光柵和傳感(光纖)光柵在不同時刻匹配,匹配時間差僅與傳感光柵有關,而與解調繫統溫度無關.實驗結果錶明,優化後繫統的線性度可提高2%,靈敏度與理論值的相對誤差小于0.6%;在10~60℃範圍內,該解調繫統溫度變化引起的相對誤差小于1%.
제출병실험험증료일충동태필배광책려파계통적우화해조방법.재압전도자구동적동태필배(광섬)광책려파해조계통중,일방면채용상승고압거치파,이소제압전도자체회효응;령일방면장압전도자전압여신장량관계적반함수작위거치파상승전압,이교정압전도자적비선성;진이,위실현해조계통적온도보상,인입일근중심파장보지불변적삼고(광섬)광책.재거치파상승과정중,필배광책여삼고광책화전감(광섬)광책재불동시각필배,필배시간차부여전감광책유관,이여해조계통온도무관.실험결과표명,우화후계통적선성도가제고2%,령민도여이론치적상대오차소우0.6%;재10~60℃범위내,해해조계통온도변화인기적상대오차소우1%.
An optimized method of dynamic matched grating filtering demodulation system is proposed and experimentally validated,in which PZT's hysteresis effect is eliminated by use of rising sawtooth wave and inverse function of relationship between PZT's voltage and displacement is adopted as the sawtooth wave to correct the PZT's nonlinear effect.Furthermore,a reference fiber Bragg grating is introduced to realized temperature compensation,of which the center wavelength keeps invariable.In the rising stage of the sawtooth wave,the matched grating will match with the reference grating and the sensing grating at different time.The time difference depends on the center wavelength of the sensing grating,and is insensitive to the temperature of the demodulation system.The experimental results indicate that linearity is improved by 2%,the sensitivity error is less than 0.6% of the theoretical result.The relative error caused by temperature changing from 10℃ to 60℃ is less than 1%.