功能材料与器件学报
功能材料與器件學報
공능재료여기건학보
JOURNAL OF FUNCTIONAL MATERIALS AND DEVICES
2009年
6期
581-586
,共6页
钱丽洁%朱金荣%许小勇%胡经国
錢麗潔%硃金榮%許小勇%鬍經國
전려길%주금영%허소용%호경국
铁磁单层膜%铁磁/反铁磁双层膜%应力场%磁电阻效应%力磁传感器
鐵磁單層膜%鐵磁/反鐵磁雙層膜%應力場%磁電阻效應%力磁傳感器
철자단층막%철자/반철자쌍층막%응력장%자전조효응%력자전감기
ferromagnetic monolayer%ferromagnet/antiferromagnet bilayer%stress field%magnetoresistante,magneto-mechanical sensor
采用变分法研究了外应力场下铁磁单层膜、铁磁/反铁磁双层膜系统的磁化性质,进而研究了由铁磁单层膜和铁磁/反铁磁双层膜所构建的自旋阀结构中的磁电阻与外应力场之间的关系.结果表明,铁磁膜中的磁化性质与膜面内所加应力场的大小,方向密切相关,而反铁磁层的嵌入将明显地改变着铁磁层的磁矩向应力场方向磁化的行为.特别地,在应力场方向垂直于铁磁易轴情况下,当应力场日H_λ=2(K_1+K_(up)/3M)时,将发生磁化从易轴方向到应力方向的突变.为此,可采用自旋阀结构,通过其膜面内的应力场所调控的磁电阻效应,构建纳米尺度下的力磁传感器.
採用變分法研究瞭外應力場下鐵磁單層膜、鐵磁/反鐵磁雙層膜繫統的磁化性質,進而研究瞭由鐵磁單層膜和鐵磁/反鐵磁雙層膜所構建的自鏇閥結構中的磁電阻與外應力場之間的關繫.結果錶明,鐵磁膜中的磁化性質與膜麵內所加應力場的大小,方嚮密切相關,而反鐵磁層的嵌入將明顯地改變著鐵磁層的磁矩嚮應力場方嚮磁化的行為.特彆地,在應力場方嚮垂直于鐵磁易軸情況下,噹應力場日H_λ=2(K_1+K_(up)/3M)時,將髮生磁化從易軸方嚮到應力方嚮的突變.為此,可採用自鏇閥結構,通過其膜麵內的應力場所調控的磁電阻效應,構建納米呎度下的力磁傳感器.
채용변분법연구료외응력장하철자단층막、철자/반철자쌍층막계통적자화성질,진이연구료유철자단층막화철자/반철자쌍층막소구건적자선벌결구중적자전조여외응력장지간적관계.결과표명,철자막중적자화성질여막면내소가응력장적대소,방향밀절상관,이반철자층적감입장명현지개변착철자층적자구향응력장방향자화적행위.특별지,재응력장방향수직우철자역축정황하,당응력장일H_λ=2(K_1+K_(up)/3M)시,장발생자화종역축방향도응력방향적돌변.위차,가채용자선벌결구,통과기막면내적응력장소조공적자전조효응,구건납미척도하적력자전감기.
Using a method of free energy minimization,the magnetization properties of the ferromagnetic monolayer and ferromagnetic(FM)/antiferromagnetic(AFM)bilayer under the stress field have been investigated.And then the relation between the magnetoresistance(MR)of the Spin-Valve structure and the applied stress field was investigated.Numerical calculation shows that under the stress field,the magnetization properties of the FM monolayer is obviously different from that of FM/AFM bilayer due to that the AFM layer coupled would obviously block the magnetization of FM layer.This phenomenon resuits to M R of the Spin-Valve structure to become obvious.Specially when the direction of stress field perpendicular to the easy axis,the magnetization direction would change from the easy axis to the stress direction at that moment at thestress field equal H_λ=2(K_1+K_(up)/3M).Based on these investigations,the perfect mechanical sensor using the magnetoresistive effect induced by the stress field in nano-scale is suggested to be devised experimentally.