微型机与应用
微型機與應用
미형궤여응용
MICROCOMPUTER & ITS APPLICATIONS
2010年
1期
64-66
,共3页
热舒适度%PMV指标%神经网络
熱舒適度%PMV指標%神經網絡
열서괄도%PMV지표%신경망락
thermal comfort%predicted mean vote%neural network
人们对室内热舒适度的关注涉及到与其有关的6个输入因素及PMV控制输出.神经网络具有很强的适应性和在线自学习能力,可以逼近任意非线性映射.用神经网络来训练,可得到空调控制系统的输入输出模型,实现空调的智能控制.
人們對室內熱舒適度的關註涉及到與其有關的6箇輸入因素及PMV控製輸齣.神經網絡具有很彊的適應性和在線自學習能力,可以逼近任意非線性映射.用神經網絡來訓練,可得到空調控製繫統的輸入輸齣模型,實現空調的智能控製.
인문대실내열서괄도적관주섭급도여기유관적6개수입인소급PMV공제수출.신경망락구유흔강적괄응성화재선자학습능력,가이핍근임의비선성영사.용신경망락래훈련,가득도공조공제계통적수입수출모형,실현공조적지능공제.
In the pursuit of indoor thermal comfort,people deed six factors as input and PMV as control output.Neural network has highly adaptive and on-line self-learning ability.It can approximate any nonlinear mapping.By using neural network,an input-output model of air-conditioning control system can be got and realize the intelligent control of air-conditioning.