应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2012年
1期
167-173
,共7页
Zakharov系统%亚音速极限%强收敛性%Strichartz估计
Zakharov繫統%亞音速極限%彊收斂性%Strichartz估計
Zakharov계통%아음속겁한%강수렴성%Strichartz고계
Zakharov system%Subsonic limit%Strong convergence%Strichartz estimate
本文研究三维空间中一个具有阻尼项的推广的Zakharov系统的亚音速极限,给出从Zakharov到非线性Schr(o)dinger方程形式极限的严格数学证明.利用弱紧性讨论和能量方法建立了弱收敛和强收敛结果.此外,还需指出,频率分解技术和Strichartz估计对强收敛性的证明是非常有用的.
本文研究三維空間中一箇具有阻尼項的推廣的Zakharov繫統的亞音速極限,給齣從Zakharov到非線性Schr(o)dinger方程形式極限的嚴格數學證明.利用弱緊性討論和能量方法建立瞭弱收斂和彊收斂結果.此外,還需指齣,頻率分解技術和Strichartz估計對彊收斂性的證明是非常有用的.
본문연구삼유공간중일개구유조니항적추엄적Zakharov계통적아음속겁한,급출종Zakharov도비선성Schr(o)dinger방정형식겁한적엄격수학증명.이용약긴성토론화능량방법건립료약수렴화강수렴결과.차외,환수지출,빈솔분해기술화Strichartz고계대강수렴성적증명시비상유용적.
This paper is concerned with the subsonic limit of a generalized Zakharov system(GZS)in three space dimensions without or with a damping term.Rigorous mathematical justification in the formal limit from the solution of GZS to the one of nonlinear Schr(o)dinger(NLS) equation is provided.Weak and strong convergence results are established by using the weak compactness argument and the energy method,respectively.On the other hand,frequency splitting and Strichartz estimates are available to prove the strong convergence.