金属学报
金屬學報
금속학보
ACTA METALLURGICA SINICA
2009年
11期
1320-1324
,共5页
聂朝胤%Akiro Ando%卢春灿%贾晓芳
聶朝胤%Akiro Ando%盧春燦%賈曉芳
섭조윤%Akiro Ando%로춘찬%가효방
电弧离子镀%Cr-Si-C-N薄膜%纳米晶%显微硬度
電弧離子鍍%Cr-Si-C-N薄膜%納米晶%顯微硬度
전호리자도%Cr-Si-C-N박막%납미정%현미경도
cathode arc ion deposition%Cr-Si-C-N film%nanocrystal%microhardness
采用电弧离子反应沉积技术在SCM415渗碳淬火钢基片上沉积了Cr-Si-C-N薄膜,三甲基硅烷(TMS)反应气体作为Si和C掺杂源,通过改变TMS流量实现了薄膜中si和C含量的调节.利用XPS,XRD,HRTEM和显微硬度计研究了Cr-Si-C-N薄膜的化学状态、显微组织和显微硬度.Cr-Si-C-N薄膜中的Si和C含量随TMS流量的增加而单调增加.在TMS流鼍小于:90 mL/min时,薄膜中Si和C含量较少,薄膜由Cr(C,N)纳米晶与Si_3N_4非品(nc-Cr(C,N)/a-Si_3N_4)组成,薄膜硬度随流量的增加而单调增大,最大至4500 HK.硬度的增加源于固溶强化及薄膜中纳米晶/非晶复合结构的形成;当TMS流量大于90 mL/min时,薄膜中Si和C含量较多,多余的C以游离态形式存在,且随TMS流量的增加而增多,薄膜硬度下降.
採用電弧離子反應沉積技術在SCM415滲碳淬火鋼基片上沉積瞭Cr-Si-C-N薄膜,三甲基硅烷(TMS)反應氣體作為Si和C摻雜源,通過改變TMS流量實現瞭薄膜中si和C含量的調節.利用XPS,XRD,HRTEM和顯微硬度計研究瞭Cr-Si-C-N薄膜的化學狀態、顯微組織和顯微硬度.Cr-Si-C-N薄膜中的Si和C含量隨TMS流量的增加而單調增加.在TMS流鼉小于:90 mL/min時,薄膜中Si和C含量較少,薄膜由Cr(C,N)納米晶與Si_3N_4非品(nc-Cr(C,N)/a-Si_3N_4)組成,薄膜硬度隨流量的增加而單調增大,最大至4500 HK.硬度的增加源于固溶彊化及薄膜中納米晶/非晶複閤結構的形成;噹TMS流量大于90 mL/min時,薄膜中Si和C含量較多,多餘的C以遊離態形式存在,且隨TMS流量的增加而增多,薄膜硬度下降.
채용전호리자반응침적기술재SCM415삼탄쉬화강기편상침적료Cr-Si-C-N박막,삼갑기규완(TMS)반응기체작위Si화C참잡원,통과개변TMS류량실현료박막중si화C함량적조절.이용XPS,XRD,HRTEM화현미경도계연구료Cr-Si-C-N박막적화학상태、현미조직화현미경도.Cr-Si-C-N박막중적Si화C함량수TMS류량적증가이단조증가.재TMS류타소우:90 mL/min시,박막중Si화C함량교소,박막유Cr(C,N)납미정여Si_3N_4비품(nc-Cr(C,N)/a-Si_3N_4)조성,박막경도수류량적증가이단조증대,최대지4500 HK.경도적증가원우고용강화급박막중납미정/비정복합결구적형성;당TMS류량대우90 mL/min시,박막중Si화C함량교다,다여적C이유리태형식존재,차수TMS류량적증가이증다,박막경도하강.
PVD or CVD Me-Si N nanocomposite films synthesized by doping Si element in metallic nitride matrix have exhibited good oxidation resistance and wear resistance. As melting the alloy target containing Si is not easy, it is difficulty to dope much more Si in the fihns by PVD techniques. In addition, the Me-Si-N films do not have enough lubrication. In this paper, Cr-Si-C-N films were prepared by cathode arc ion deposition technique, in which tetramethylsilane (TMS) was used as Si and C sources, and their concentrations in the Cr-Si-C-N fihns can be controlled by TMS flow. The state of chemical bonding, microstructure and microhardncss were investigated by XPS, XRD, HRTEM and microindentation hardness tester. Results show that the Si and C contents increase monotonicly with the increase of TMS flow. When the TMS flow is lower than 90 mL/min, the Cr-Si-C-N fihn has a composite structure of Cr(C, N) nanocrystals dispersing in the amorphous Si_3N_4 (nc-Cr(C, N)/a-Si_3N_4), and the microhardness increases to 4500 HK with increas-ing TMS flow. Such high hardness originates from the solid solution hardening of the doping fewer element and the Veprek nanocompositc structure hardening mechanism. With the further increase of TMS flow, the hardness decreases because of the appearance of free C.