表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2009年
6期
32-35
,共4页
横向磁场%堆焊%碳弧%铁基合金%磨损%硬质相
橫嚮磁場%堆銲%碳弧%鐵基閤金%磨損%硬質相
횡향자장%퇴한%탄호%철기합금%마손%경질상
Transverse magnetic field%Surfacing%Carbon arc%Iron based alloy%Wear%Hard phase
为了利用磁场的作用提高堆焊层的性能,研究了磁场对铁基碳弧堆焊层组织和性能的影响,在对Cr-B-Ni-V系铁基合金进行碳弧堆焊时加入直流横向磁场,以求细化堆焊层金属的组织,控制硬质相的形态及分布.通过对堆焊层进行硬度试验、磨损试验、金相试验,得出了堆焊电流和磁场电流对堆焊层金属的硬度和耐磨性的影响规律.结果表明:施加磁场的堆焊层比未施加磁场的堆焊层硬度高,耐磨性好;堆焊电流与磁场电流相匹配(堆焊电流180A,磁场电流3A)时,堆焊层的性能达到最佳,即硬度最高,耐磨性最好,此时堆焊层中硬质相细小且分布均匀,呈"六角形",方向一致.
為瞭利用磁場的作用提高堆銲層的性能,研究瞭磁場對鐵基碳弧堆銲層組織和性能的影響,在對Cr-B-Ni-V繫鐵基閤金進行碳弧堆銲時加入直流橫嚮磁場,以求細化堆銲層金屬的組織,控製硬質相的形態及分佈.通過對堆銲層進行硬度試驗、磨損試驗、金相試驗,得齣瞭堆銲電流和磁場電流對堆銲層金屬的硬度和耐磨性的影響規律.結果錶明:施加磁場的堆銲層比未施加磁場的堆銲層硬度高,耐磨性好;堆銲電流與磁場電流相匹配(堆銲電流180A,磁場電流3A)時,堆銲層的性能達到最佳,即硬度最高,耐磨性最好,此時堆銲層中硬質相細小且分佈均勻,呈"六角形",方嚮一緻.
위료이용자장적작용제고퇴한층적성능,연구료자장대철기탄호퇴한층조직화성능적영향,재대Cr-B-Ni-V계철기합금진행탄호퇴한시가입직류횡향자장,이구세화퇴한층금속적조직,공제경질상적형태급분포.통과대퇴한층진행경도시험、마손시험、금상시험,득출료퇴한전류화자장전류대퇴한층금속적경도화내마성적영향규률.결과표명:시가자장적퇴한층비미시가자장적퇴한층경도고,내마성호;퇴한전류여자장전류상필배(퇴한전류180A,자장전류3A)시,퇴한층적성능체도최가,즉경도최고,내마성최호,차시퇴한층중경질상세소차분포균균,정"륙각형",방향일치.
In order to improve the properties of surfacing layers, study the influence of magnetic field on micro-structure and properties of carbon arc surfacing layer, a DC transverse magnetic field was applied to the carbon arc surfa-cing of Cr-B-Ni-V iron based alloy system. An attempt to refine the structure of surfacing layer metal and control the mor-phology and distribution of hard phase in surfacing layer was made. The influence of surfacing current and magnetic field current on degree of hardness and wear resistance was obtained through hardness test, wear test and microscopic test. The results show that the surfacing layer of introducing magnetic field has higher hardness and better wear resistance than the surfacing layer without magnetic field; The properties of surfacing layer are optimal when surfacing current and mag-netic field current match each other. That is, the hardness and wear resistance of surfacing layer are optimal when surfa-cing current is 180 A and magnetic field current is 3A. At this point, the hard phase in the surfacing layer is fine and e-ven, hexagonal in shape, the orientation of which is consistent.