测绘与空间地理信息
測繪與空間地理信息
측회여공간지리신식
GEOMATICS & SPATIAL INFORMATION TECHNOLOGY
2012年
1期
55-58
,共4页
潘灼坤%王芳%夏丽华%周锡振
潘灼坤%王芳%夏麗華%週錫振
반작곤%왕방%하려화%주석진
高光谱遥感%端元%小波变换%光谱特征匹配
高光譜遙感%耑元%小波變換%光譜特徵匹配
고광보요감%단원%소파변환%광보특정필배
hyperspectral remote sensing%endmember%wavelet transformation%spectral feature fitting
光谱特征匹配分类是常用的高光谱影像分类、识别地物的方法,针对高光谱影像提取植被盖度存在的问题,文章根据高光谱遥感影像处理的方法,采用EO-1卫星在广州市过境的Hyperion高光谱影像,以"广州南肺"万亩果园作为试验区,经过大气纠正——最小噪声分离变换(MNF)——最纯净像元指数计算(PPI)——提取植被的端元,以此作为研究区识别植被的参考样本,进行光谱特征匹配提取植被盖度。其中提出利用连续小波变换对参考端元的波谱曲线降噪的方法,旨在优化光谱特征匹配,以提高识别植被的精度。实验结果表明,这种辅助匹配的方法能有效提高识别植被的精度。
光譜特徵匹配分類是常用的高光譜影像分類、識彆地物的方法,針對高光譜影像提取植被蓋度存在的問題,文章根據高光譜遙感影像處理的方法,採用EO-1衛星在廣州市過境的Hyperion高光譜影像,以"廣州南肺"萬畝果園作為試驗區,經過大氣糾正——最小譟聲分離變換(MNF)——最純淨像元指數計算(PPI)——提取植被的耑元,以此作為研究區識彆植被的參攷樣本,進行光譜特徵匹配提取植被蓋度。其中提齣利用連續小波變換對參攷耑元的波譜麯線降譟的方法,旨在優化光譜特徵匹配,以提高識彆植被的精度。實驗結果錶明,這種輔助匹配的方法能有效提高識彆植被的精度。
광보특정필배분류시상용적고광보영상분류、식별지물적방법,침대고광보영상제취식피개도존재적문제,문장근거고광보요감영상처리적방법,채용EO-1위성재엄주시과경적Hyperion고광보영상,이"엄주남폐"만무과완작위시험구,경과대기규정——최소조성분리변환(MNF)——최순정상원지수계산(PPI)——제취식피적단원,이차작위연구구식별식피적삼고양본,진행광보특정필배제취식피개도。기중제출이용련속소파변환대삼고단원적파보곡선강조적방법,지재우화광보특정필배,이제고식별식피적정도。실험결과표명,저충보조필배적방법능유효제고식별식피적정도。
Spectral feature fitting(SFF) classification is a method commonly used in hyperspctral image classification and feature identification.To tackle the shortage of vegetation cover extracting from hyperspctral image,according to the processing method for hyperspectral remote sensing image,this study used the Hyperion hyperspectral image in Guangzhou captured by the EO-1 satellite and took Wan Mu Fruit Garden as experimental area which is known as the "Guangzhou South Lung".The experiment goes through the following process: atmospheric correction——minimum noise fraction transformation(MNF)—— pixel purity index calculation(PPI)——vegetation end-member extraction,which is taken as the identification reference sample for the spectral feature fitting.In this study we propose a noise reduction method for reference endmember's spectral curve by using continual wavelet transformation with the purpose of optimizing the spectral feature fitting to enhance the precision of vegetation recognition.The experimental result indicates that this auxiliary fitting method can effectively enhance the precision for vegetation recognition.