西安交通大学学报
西安交通大學學報
서안교통대학학보
JOURNAL OF XI'AN JIAOTONG UNIVERSITY
1999年
1期
1-9
,共9页
流动分离%动能密度%失速%降低阻力
流動分離%動能密度%失速%降低阻力
류동분리%동능밀도%실속%강저조력
flow separation%kinetic energy density%stalling%drag reduction
在空间场中动能密度的时间变化率有许多极小值,定义流动分离发生在其最小值处.可利用流体的无粘流动解计算动能密度值,而采用保角变换的方法,则可获得复杂几何形状下的有势流场解,从而很容易确定出可能的流动分离位置.将此判据应用于流线外型的设计,对延迟流动分离及减少阻力是有帮助的.对于均匀来流的圆柱绕流问题,该判据预示流动分离发生在离后驻点角度为±54.74°处,而已知的实验数据指出:流动分离发生在±50°与±58°之间.对于长轴:短轴=1:6的椭圆翼剖面,当来流攻角在7°与8°之间时,将开始发生严重的失速现象.英国皇家空军34翼剖面(具有相同的长短轴比)的实验数据表明,失速开始发生在12°与14°攻角之间,可见理论值与实验值接近.文中讨论了其它形状的翼剖面,说明如何通过选择机翼的形状来延迟失速现象的发生.
在空間場中動能密度的時間變化率有許多極小值,定義流動分離髮生在其最小值處.可利用流體的無粘流動解計算動能密度值,而採用保角變換的方法,則可穫得複雜幾何形狀下的有勢流場解,從而很容易確定齣可能的流動分離位置.將此判據應用于流線外型的設計,對延遲流動分離及減少阻力是有幫助的.對于均勻來流的圓柱繞流問題,該判據預示流動分離髮生在離後駐點角度為±54.74°處,而已知的實驗數據指齣:流動分離髮生在±50°與±58°之間.對于長軸:短軸=1:6的橢圓翼剖麵,噹來流攻角在7°與8°之間時,將開始髮生嚴重的失速現象.英國皇傢空軍34翼剖麵(具有相同的長短軸比)的實驗數據錶明,失速開始髮生在12°與14°攻角之間,可見理論值與實驗值接近.文中討論瞭其它形狀的翼剖麵,說明如何通過選擇機翼的形狀來延遲失速現象的髮生.
재공간장중동능밀도적시간변화솔유허다겁소치,정의류동분리발생재기최소치처.가이용류체적무점류동해계산동능밀도치,이채용보각변환적방법,칙가획득복잡궤하형상하적유세류장해,종이흔용역학정출가능적류동분리위치.장차판거응용우류선외형적설계,대연지류동분리급감소조력시유방조적.대우균균래류적원주요류문제,해판거예시류동분리발생재리후주점각도위±54.74°처,이이지적실험수거지출:류동분리발생재±50°여±58°지간.대우장축:단축=1:6적타원익부면,당래류공각재7°여8°지간시,장개시발생엄중적실속현상.영국황가공군34익부면(구유상동적장단축비)적실험수거표명,실속개시발생재12°여14°공각지간,가견이론치여실험치접근.문중토론료기타형상적익부면,설명여하통과선택궤익적형상래연지실속현상적발생.
Among the many minima of the time rate change of kinetic energy density with time,the minimum with reference to the space coordinates is postulated to coincide with the location of fluid detachment from the solid surface.Inviscid flow solution can be used to compute for the velocity field from which the kinetic energy density can be found.Mapping function for potential flow makes access to solutions for complicated geometric configurations such that potential sites of flow separation can be readily determined and used for the design of streamline bodies to delay separation and/or reduce drag.For uniform flow over a stationary circular cylinder,the criterion predicts separation points at angles ±54.74° from the rear stagnation point for potential flow. Known experimental results show that separation occurs between ±50° to ±58°.For elliptical cross-section airfoil with an aspect ratio of 6,a severe stalling angle of attack between 7°and 8° was predicted. This is close to the known result for the Royal Airforce 34 airfoil with the same aspect ratio where stalling occurred in the range of 12° to 14° angle of attack. Results for other airfoil shapes are given and discussed in connection with how airfoil profile could be chosen to delay stalling.