功能材料
功能材料
공능재료
JOURNAL OF FUNCTIONAL MATERIALS
2010年
2期
235-237
,共3页
孙震%谢晗科%狄霞%李卫%冯良桓%张静全%武莉莉%黎兵%雷智
孫震%謝晗科%狄霞%李衛%馮良桓%張靜全%武莉莉%黎兵%雷智
손진%사함과%적하%리위%풍량환%장정전%무리리%려병%뢰지
Cd_(1-x)Zn_xS%多晶薄膜%共蒸发%光学能隙%电导激活能
Cd_(1-x)Zn_xS%多晶薄膜%共蒸髮%光學能隙%電導激活能
Cd_(1-x)Zn_xS%다정박막%공증발%광학능극%전도격활능
Cd_(1-x)Zn_xS%polycrystalline thin films%co-evaporation%optical energy gap%conductivity activation energy
采用真空共蒸发法制备了Cd_(1-x)Zn_xS多晶薄膜,研究了Cd_(1-x)Zn_xS(x=0.88)多晶薄膜的结构与光电特性.XRD的结果表明,0<x≤0.9,Cd_(1-x)Zn_xS薄膜为六方结构,高度择优取向;荧光光谱分析与Vegard定理的结果以及石英振荡法监测的Cd_(1-x)Zn_xS多晶薄膜的组分吻合;制备的Cd_(1-x)Zn_xS多晶薄膜的光学透射谱的吸收边随Zn含量的增加发生蓝移,其光学能隙调制在CdS与ZnS能隙之间;最后测量了Cd_(1-x)Zn_xS薄膜室温电阻率及暗电导率随温度的变化情况,计算了Cd_(1-x)Zn_xS薄膜的电导激活能.
採用真空共蒸髮法製備瞭Cd_(1-x)Zn_xS多晶薄膜,研究瞭Cd_(1-x)Zn_xS(x=0.88)多晶薄膜的結構與光電特性.XRD的結果錶明,0<x≤0.9,Cd_(1-x)Zn_xS薄膜為六方結構,高度擇優取嚮;熒光光譜分析與Vegard定理的結果以及石英振盪法鑑測的Cd_(1-x)Zn_xS多晶薄膜的組分吻閤;製備的Cd_(1-x)Zn_xS多晶薄膜的光學透射譜的吸收邊隨Zn含量的增加髮生藍移,其光學能隙調製在CdS與ZnS能隙之間;最後測量瞭Cd_(1-x)Zn_xS薄膜室溫電阻率及暗電導率隨溫度的變化情況,計算瞭Cd_(1-x)Zn_xS薄膜的電導激活能.
채용진공공증발법제비료Cd_(1-x)Zn_xS다정박막,연구료Cd_(1-x)Zn_xS(x=0.88)다정박막적결구여광전특성.XRD적결과표명,0<x≤0.9,Cd_(1-x)Zn_xS박막위륙방결구,고도택우취향;형광광보분석여Vegard정리적결과이급석영진탕법감측적Cd_(1-x)Zn_xS다정박막적조분문합;제비적Cd_(1-x)Zn_xS다정박막적광학투사보적흡수변수Zn함량적증가발생람이,기광학능극조제재CdS여ZnS능극지간;최후측량료Cd_(1-x)Zn_xS박막실온전조솔급암전도솔수온도적변화정황,계산료Cd_(1-x)Zn_xS박막적전도격활능.
In this paper,the polycrystalline Cd_(1-x)Zn_xS thin films were prepared by the vacuum co-evaporation method and structural,optical,and electrical properties of Cd_(1-x)Zn_xS(x=0.88) thin films were investigated.Cd_(1-x)Zn_xS(0<x≤0.9) thin films were hexagonal structure and showed highly preferential orientation.The composition of Cd_(1-x)Zn_xS thin films determined from Vegard law and quartz crystal oscillation method agrees with that determined from the X-ray fluorescence spectra.Optical absorption edge of optical transmittance for Cd_(1-x)Zn_xS thin films exhibits a blue shift with the increase of the zinc content,which indicates that optical energy gap can be tuned between 2.44-3.78eV.Finally,the values of dark conductivity for Cd_(1-x)Zn_xS thin films at various temperatures were measured,and conductivity activation energies were calculated.