湖南大学学报(自然科学版)
湖南大學學報(自然科學版)
호남대학학보(자연과학판)
JOURNAL OF HUNAN UNIVERSITY(NATURAL SCIENCES EDITION)
2009年
12期
13-17
,共5页
吕建根%金波%赵跃宇%王荣辉
呂建根%金波%趙躍宇%王榮輝
려건근%금파%조약우%왕영휘
斜拉索拱%1:1内共振%分叉%混沌
斜拉索拱%1:1內共振%分扠%混沌
사랍색공%1:1내공진%분차%혼돈
cable-stayed arch%one-to-one internal resonance%bifurcation%chaos
研究在拱受外激励作用下斜拉索拱结构中索拱之间1∶1内共振问题.当拱的某阶频率接近索的某阶频率时,可导致索拱之间出现1∶1内共振,利用已建立的斜拉索拱非线性动力学耦合面内运动微分方程,采用Galerkin方法把斜拉索拱的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到拱主共振情况下的平均方程,研究在拱受到外激励作用下拱振动对索振动产生的影响,同时对斜拉索拱内共振时的稳定、分叉及混沌情况进行了分析.结果表明:拱受到外激励产生共振后,通过索拱之间的内共振容易激发对柔性索的振动,导致索出现较大的幅值.能量在索拱之间相互传递,原本静止的索也可能出现共振,共振频域区间内索拱振动将出现跳跃、分叉及混沌等复杂的非线性动力学行为.
研究在拱受外激勵作用下斜拉索拱結構中索拱之間1∶1內共振問題.噹拱的某階頻率接近索的某階頻率時,可導緻索拱之間齣現1∶1內共振,利用已建立的斜拉索拱非線性動力學耦閤麵內運動微分方程,採用Galerkin方法把斜拉索拱的麵內運動方程進行離散,然後利用多呎度法對離散的運動方程進行攝動得到拱主共振情況下的平均方程,研究在拱受到外激勵作用下拱振動對索振動產生的影響,同時對斜拉索拱內共振時的穩定、分扠及混沌情況進行瞭分析.結果錶明:拱受到外激勵產生共振後,通過索拱之間的內共振容易激髮對柔性索的振動,導緻索齣現較大的幅值.能量在索拱之間相互傳遞,原本靜止的索也可能齣現共振,共振頻域區間內索拱振動將齣現跳躍、分扠及混沌等複雜的非線性動力學行為.
연구재공수외격려작용하사랍색공결구중색공지간1∶1내공진문제.당공적모계빈솔접근색적모계빈솔시,가도치색공지간출현1∶1내공진,이용이건립적사랍색공비선성동역학우합면내운동미분방정,채용Galerkin방법파사랍색공적면내운동방정진행리산,연후이용다척도법대리산적운동방정진행섭동득도공주공진정황하적평균방정,연구재공수도외격려작용하공진동대색진동산생적영향,동시대사랍색공내공진시적은정、분차급혼돈정황진행료분석.결과표명:공수도외격려산생공진후,통과색공지간적내공진용역격발대유성색적진동,도치색출현교대적폭치.능량재색공지간상호전체,원본정지적색야가능출현공진,공진빈역구간내색공진동장출현도약、분차급혼돈등복잡적비선성동역학행위.
The internal resonance of cable-stayed arch under external excitation on arch with one-to-one internal resonance was investigated.The frequency of the cables and the frequency of the arch were studied, resulting in a one-to-one internal resonance, The coupling nonlinear dynamic equations of the cable-stayed arch derived by using Hamilton principle were used. First, the Galerkin method was used to discrete the nonlinear equation of planar motion. Then, the method of multiple scales was applied to perturb the discrete equations of motion, and the averaged equation under the primary resonances of arch was obtained. The impact of the vibration of the arch over the vibration of cables under external excitation on the arch was studied, and the equilibrium solution, the period solution and chaotic solution of averaging equations were examined. Numerical calculation results have shown that, after the resonance of the arch appears under the external excitation,the resonance of cables is easily excited through the internal resonance between cables and arch, resulting in a larger amplitude of cables. The energy is transferred between the cables and the arch, and the cable-stayed arch show complicated nonlinearity dynamic behavior, such as leap, bifurcation and chaos within the resonance frequency region.