高等数学研究
高等數學研究
고등수학연구
STUDIES IN COLLEGE MATHEMATICS
2012年
1期
47-47
,共1页
高阶无穷小%导数%速度
高階無窮小%導數%速度
고계무궁소%도수%속도
higher order infinitesimal%derivative%speed
某极限过程中,若a(x)为比β(x)高阶无穷小,则a(x)比β(x)趋于0的“速度”快,这里的“速度”是指无穷小量与零的距离随自变量x的变化而变化的“速度”;而函数f(x)的导数f(x)是指函数f(x)在点x处的变化“速度”,是指“瞬时速度”.二个“速度”的意义不同.
某極限過程中,若a(x)為比β(x)高階無窮小,則a(x)比β(x)趨于0的“速度”快,這裏的“速度”是指無窮小量與零的距離隨自變量x的變化而變化的“速度”;而函數f(x)的導數f(x)是指函數f(x)在點x處的變化“速度”,是指“瞬時速度”.二箇“速度”的意義不同.
모겁한과정중,약a(x)위비β(x)고계무궁소,칙a(x)비β(x)추우0적“속도”쾌,저리적“속도”시지무궁소량여령적거리수자변량x적변화이변화적“속도”;이함수f(x)적도수f(x)시지함수f(x)재점x처적변화“속도”,시지“순시속도”.이개“속도”적의의불동.
The word "speed" is used in the comparison of two infinitesimals, such as the speed of a(x) tends to zero is faster than the speed of β(x). For a function, its derivative at x is also referred as the "speed" of the function at point x. The two "speed" above have different meanings, and this paper provides some discussions.