现代计算机:下半月版
現代計算機:下半月版
현대계산궤:하반월판
Modem Computer
2011年
18期
3-5,20
,共4页
变系数%广义KdV—Burgers方程%函数变换%类孤子解
變繫數%廣義KdV—Burgers方程%函數變換%類孤子解
변계수%엄의KdV—Burgers방정%함수변환%류고자해
Variable Coefficient%Generalized KdV-Burgers Equation%Function Transformation%Soliton-Like Solutions
利用一种函数变换将变系数广义KdV—Burgers方程约化为非线性常微分方程(NLODE).并由此NLODE出发获得变系数广义KdV—Burgers方程的若干精确类孤子解。由此可见,用这种方法还可以求解一大类变系数非线性演化方程。
利用一種函數變換將變繫數廣義KdV—Burgers方程約化為非線性常微分方程(NLODE).併由此NLODE齣髮穫得變繫數廣義KdV—Burgers方程的若榦精確類孤子解。由此可見,用這種方法還可以求解一大類變繫數非線性縯化方程。
이용일충함수변환장변계수엄의KdV—Burgers방정약화위비선성상미분방정(NLODE).병유차NLODE출발획득변계수엄의KdV—Burgers방정적약간정학류고자해。유차가견,용저충방법환가이구해일대류변계수비선성연화방정。
By using a transformation, the variable coefficient generalized KdV-Burgers equation is reduced to nonlinear ordinary differential equation (NLODE). Several exact soliton-like solutions for the variable coefficient generalized KdV-Burgers equation are obtained through use of the corresponding reduced NLODE. Form this example we can see that this method can be applied to solve a large number of nonlinear evolution equations.