生物加工过程
生物加工過程
생물가공과정
CHINESE JOURNAL OF BIOPROCESS ENGINEERING
2009年
6期
15-20
,共6页
范林萍%杨顺楷%吴中柳%杨亚力%李小刚
範林萍%楊順楷%吳中柳%楊亞力%李小剛
범림평%양순해%오중류%양아력%리소강
蓝色犁头霉%新月弯孢霉%多轮序列%生物转化%氢化可的松
藍色犛頭黴%新月彎孢黴%多輪序列%生物轉化%氫化可的鬆
람색리두매%신월만포매%다륜서렬%생물전화%경화가적송
Absidia coerulea AS 3.65%Curvularia lunata AS 3.4381%multi-run sequence%bioconversion%hydrocortisone
建立了蓝色犁头霉AS 3.65和新月弯孢霉AS 3.4381协同多轮转化17α-羟基孕甾-4-烯-3,20-二酮-21-醋酸酯(RSA)制氢化可的松(hydrocortisone,HC)新工艺.在培养好的AS 3.65和AS 3.4381所组成的协同转化体系中,AS 3.65首先将RSA水解为脱氧皮质酮(RS),这较AS 3.4381单轮批次转化省去了RSA到RS的化学水解工序.在甾体底物RSA平均投料质量浓度为1.3 g/L和1 g/L的条件下,所选定的协同转化体系可分别被重复利用3轮和6轮,相应的平均产率能维持在较高水平,分别高达81.6%和85%.另外,该工艺明显减少了底物RSA投料浓度对C_11位羟化的影响,并有效抑制了AS 3.4381和AS 3.65单独转化过程中出现的14-α-OH-RS和11-α-OH-RS副产物.
建立瞭藍色犛頭黴AS 3.65和新月彎孢黴AS 3.4381協同多輪轉化17α-羥基孕甾-4-烯-3,20-二酮-21-醋痠酯(RSA)製氫化可的鬆(hydrocortisone,HC)新工藝.在培養好的AS 3.65和AS 3.4381所組成的協同轉化體繫中,AS 3.65首先將RSA水解為脫氧皮質酮(RS),這較AS 3.4381單輪批次轉化省去瞭RSA到RS的化學水解工序.在甾體底物RSA平均投料質量濃度為1.3 g/L和1 g/L的條件下,所選定的協同轉化體繫可分彆被重複利用3輪和6輪,相應的平均產率能維持在較高水平,分彆高達81.6%和85%.另外,該工藝明顯減少瞭底物RSA投料濃度對C_11位羥化的影響,併有效抑製瞭AS 3.4381和AS 3.65單獨轉化過程中齣現的14-α-OH-RS和11-α-OH-RS副產物.
건립료람색리두매AS 3.65화신월만포매AS 3.4381협동다륜전화17α-간기잉치-4-희-3,20-이동-21-작산지(RSA)제경화가적송(hydrocortisone,HC)신공예.재배양호적AS 3.65화AS 3.4381소조성적협동전화체계중,AS 3.65수선장RSA수해위탈양피질동(RS),저교AS 3.4381단륜비차전화성거료RSA도RS적화학수해공서.재치체저물RSA평균투료질량농도위1.3 g/L화1 g/L적조건하,소선정적협동전화체계가분별피중복이용3륜화6륜,상응적평균산솔능유지재교고수평,분별고체81.6%화85%.령외,해공예명현감소료저물RSA투료농도대C_11위간화적영향,병유효억제료AS 3.4381화AS 3.65단독전화과정중출현적14-α-OH-RS화11-α-OH-RS부산물.
A novel process of multi-run sequence biotransformation of 17α-hydroxypregn-4-en-3,20-dione-21-acetate (RSA) to hydrocortisone (HC) was developed by active mycelia of Absidia coerulea AS 3.65 and Curvularia lunata AS 3.4381. The cooperative sequence bioconversion was efficiently operated with the cultured mycelia of AS 3.65 and AS 3.4381. RSA was hydrolyzed to RS by AS 3.65, and omitted the chemical hydrolysis step with AS 3.4381 in a single batch conversion. Moreover, a multi-run sequence conversion system with the mycelia of AS 3.65 and AS 3.4381 was reused for three or six times, and the rate of each conversion run of RSA to HC was kept at a high level, i.e., the hydroxylation at C_11-β position of RS was more than 81.6% and 85% with 1.3 g/L and 1 g/L RSA substrate concentrations, respectively. Generally, under this condition, three-run and six-run sequence bioconversion was done. In particular, the effect of RSA concentration on C_11-position hydroxylation was reduced, and the production of undesirable by-product was inhibited, i.e., on 14α-OH-RS of AS 3.4381 and on 11α-OH-RS of AS 3.65, respectively.