中华骨科杂志
中華骨科雜誌
중화골과잡지
CHINESE JOURNAL OF ORTHOPAEDICS
2009年
5期
492-498
,共7页
许宋锋%王臻%于秀淳%王林%林开利%王路%李涤尘%常江
許宋鋒%王臻%于秀淳%王林%林開利%王路%李滌塵%常江
허송봉%왕진%우수순%왕림%림개리%왕로%리조진%상강
硅酸盐类%组织工程%骨髓细胞%体外研究
硅痠鹽類%組織工程%骨髓細胞%體外研究
규산염류%조직공정%골수세포%체외연구
Silicates%Tissue engineering%Bone marrow cells%In vitro
目的 利用快速成型技术制备可控结构多孔硅酸钙(rapid pfototyping-calcium silicate,RP-CS)支架,并评价其特性和体外生物学表现.方法 利用间接快速成型技术,结合固态自由成型和凝胶铸模的优点.制备町控结构RP-CS支架.与采用间法制备的多孔磷酸钙(RP-tricalcium phosphate,RP-TCP)支架相对照,将其置人体外模拟体液(simulated body fluid,SBF)、体外骨髓细胞共培养进行研究.结果 所制备RP-CS支架具有相互连通的孔道结构,平均孔隙率为71%,平均轴向压缩强度为28MPa.平均孔道直径为(555.82±29.77)μm.体外SBF浸置试验发现RP-CS支架上有羟基磷灰石的沉积,说明此支架具有体外生物活性.体外细胞共培养试验表明,兔骨髓细胞可以在此支架表面贴附并分化.MTT表明共培养7 d、14 d,细胞增殖RP-CS组均明显高于RP-TCP组(P<0.05).共培养7 d时,碱性磷酸酶活性RP-CS组明显高于RP-TCP组(P<0.05),提示CS可能具有促进骨髓细胞向成骨细胞分化的能力.结论 利用快速成型技术制备的可控结构RP-CS具有良好的生物相容性,在骨组织工程领域具有广泛应用前景.
目的 利用快速成型技術製備可控結構多孔硅痠鈣(rapid pfototyping-calcium silicate,RP-CS)支架,併評價其特性和體外生物學錶現.方法 利用間接快速成型技術,結閤固態自由成型和凝膠鑄模的優點.製備町控結構RP-CS支架.與採用間法製備的多孔燐痠鈣(RP-tricalcium phosphate,RP-TCP)支架相對照,將其置人體外模擬體液(simulated body fluid,SBF)、體外骨髓細胞共培養進行研究.結果 所製備RP-CS支架具有相互連通的孔道結構,平均孔隙率為71%,平均軸嚮壓縮彊度為28MPa.平均孔道直徑為(555.82±29.77)μm.體外SBF浸置試驗髮現RP-CS支架上有羥基燐灰石的沉積,說明此支架具有體外生物活性.體外細胞共培養試驗錶明,兔骨髓細胞可以在此支架錶麵貼附併分化.MTT錶明共培養7 d、14 d,細胞增殖RP-CS組均明顯高于RP-TCP組(P<0.05).共培養7 d時,堿性燐痠酶活性RP-CS組明顯高于RP-TCP組(P<0.05),提示CS可能具有促進骨髓細胞嚮成骨細胞分化的能力.結論 利用快速成型技術製備的可控結構RP-CS具有良好的生物相容性,在骨組織工程領域具有廣汎應用前景.
목적 이용쾌속성형기술제비가공결구다공규산개(rapid pfototyping-calcium silicate,RP-CS)지가,병평개기특성화체외생물학표현.방법 이용간접쾌속성형기술,결합고태자유성형화응효주모적우점.제비정공결구RP-CS지가.여채용간법제비적다공린산개(RP-tricalcium phosphate,RP-TCP)지가상대조,장기치인체외모의체액(simulated body fluid,SBF)、체외골수세포공배양진행연구.결과 소제비RP-CS지가구유상호련통적공도결구,평균공극솔위71%,평균축향압축강도위28MPa.평균공도직경위(555.82±29.77)μm.체외SBF침치시험발현RP-CS지가상유간기린회석적침적,설명차지가구유체외생물활성.체외세포공배양시험표명,토골수세포가이재차지가표면첩부병분화.MTT표명공배양7 d、14 d,세포증식RP-CS조균명현고우RP-TCP조(P<0.05).공배양7 d시,감성린산매활성RP-CS조명현고우RP-TCP조(P<0.05),제시CS가능구유촉진골수세포향성골세포분화적능력.결론 이용쾌속성형기술제비적가공결구RP-CS구유량호적생물상용성,재골조직공정영역구유엄범응용전경.
Objective To fabricate porous calcium silicate (CS) scaffolds with controlled architecture by rapid prototyping and to evaluate the characterization of scaffolds and cell proliferation and differentiation on the prepared scaffolds. Methods The porous calcium silicate scaffolds with controlled architecture was fabricated by indirect rapid prototyping (RP-CS) which has the combined advantages of indirect solid freeform fabrication and gel-casting. Compared with the porous tricalcium phosphate scaffolds fabricated with the same method (RP-TCP), the obtained RP-CS scaffolds were investigated by simulated body fluid (SBF) immersing test and in vitro incubation with bone marrow cells. Results An average compressive strength of 28 MPa for the RP-CS scaffold with the average total porosity of 71% was achieved. The scaffolds with mean channel diameter of about (555.82±29.77)μm have interconnected macroporous architecture. The SBF test showed that hydroxyapatite could be found on the surface of RP-CS scaffold indicating its in vitro bioactivity. The in vitro study showed that the rabbit bone marrow cells attached and proliferated on the surface of the RP-CS scaffolds. MTF tests demonstrated that the cell proliferation was significantly higher on RP-CS scaffolds than on RP-TCP scaffolds at 7 and 14 days (P<0.05). Moreover, the alkaline phosphatase (ALP) activities of cells on RP-CS scaffolds were increased as compared to the control at 7 days (P<0.05), indicating the capacity in promoting bone marrow cells differentiation into osteogenic cells. Conclusion The obtained RP-CS scaffold in this study is biocompatible, and has promising future for bone tissue engineering.