岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2010年
2期
397-402
,共6页
内变量%张量函数表示定理%本构方程%塑性势%各向同性%屈服面
內變量%張量函數錶示定理%本構方程%塑性勢%各嚮同性%屈服麵
내변량%장량함수표시정리%본구방정%소성세%각향동성%굴복면
internal variable%tensor function representation theorem%constitutive equations%plastic potential%isotropy%yield surface
针对各向同性材料,基于张量函数表示定理,建立了本构关系的张量不变性表示,其中,3个不可约基张量取决于应力的0~2次幂,且相互正交,3个系数由塑性应变增量和应力的不变量表示.基于塑性应变增量的不变量定义内变量,本构关系归结为确定内变量的演化.使用张量函数表示定理,给出了内变量演化方程的一般表达式,它取决于应力不变量的增量,因而与主轴旋转无关.讨论了如何根据试验资料和引入适当的假定,确定具体的演化方程.通过与塑性势理论和多重屈服面理论进行比较,表明所建模型是这些理论的最一般表示,且简捷直观、使用方便.
針對各嚮同性材料,基于張量函數錶示定理,建立瞭本構關繫的張量不變性錶示,其中,3箇不可約基張量取決于應力的0~2次冪,且相互正交,3箇繫數由塑性應變增量和應力的不變量錶示.基于塑性應變增量的不變量定義內變量,本構關繫歸結為確定內變量的縯化.使用張量函數錶示定理,給齣瞭內變量縯化方程的一般錶達式,它取決于應力不變量的增量,因而與主軸鏇轉無關.討論瞭如何根據試驗資料和引入適噹的假定,確定具體的縯化方程.通過與塑性勢理論和多重屈服麵理論進行比較,錶明所建模型是這些理論的最一般錶示,且簡捷直觀、使用方便.
침대각향동성재료,기우장량함수표시정리,건립료본구관계적장량불변성표시,기중,3개불가약기장량취결우응력적0~2차멱,차상호정교,3개계수유소성응변증량화응력적불변량표시.기우소성응변증량적불변량정의내변량,본구관계귀결위학정내변량적연화.사용장량함수표시정리,급출료내변량연화방정적일반표체식,타취결우응력불변량적증량,인이여주축선전무관.토론료여하근거시험자료화인입괄당적가정,학정구체적연화방정.통과여소성세이론화다중굴복면이론진행비교,표명소건모형시저사이론적최일반표시,차간첩직관、사용방편.
The author presents the general invariant formulation of constitutive equations based on the representation theorem for the isotropic materials.The equations are a linear combination of three irreducible tensor function bases,which depend on the zero,first and second order power of stress tensor and are orthogonal to one another.Three coefficients depend on three invariants of stresses and plastic strain increments respectively.The internal variables are defined in terms of three invariants of the plastic strain increments.Therefore,the evolution equations of the internal variables are needed to be determined to form a closed constitutive theory.Using the representation theorem,the evolution equations are obtained in a general form.It depends on the increment of invariants of the stress,and therefore is independent of the rotation of the principal axes of stress.It is discussed how the evolution equations are specified from the experiment data in combination with some assumptions.Finally,the constitutive equations presented in this paper are compared with the classical plastic potential theory and the multi-yield surface theory.It is showed that the former is a general representation of the latter two theories,and is more simple and convenient for use.