红外与毫米波学报
紅外與毫米波學報
홍외여호미파학보
JOURNAL OF INFRARED AND MILLIMETER WAVES
2011年
2期
97-103
,共7页
唐晶磊%何东健%景旭%冯大淦
唐晶磊%何東健%景旭%馮大淦
당정뢰%하동건%경욱%풍대감
精准农业%图像分割%杂草识别%支持向量机
精準農業%圖像分割%雜草識彆%支持嚮量機
정준농업%도상분할%잡초식별%지지향량궤
precision agriculture%image segmentation%weed detection%support vector machine
杂草的识别分类在精准农业的变量喷施中具有重要的作用.因此提出了一种新的基于SVM(支持向量机),利用决策二叉树在可见/近红外图像中识别作物和杂草的方法.根据近红外波段的光谱特性,利用阈值法实现了植物和土壤背景的分割.将植物冠层的多光谱反射特征、纹理特征和形状特征相结合,采用最大投票机制算法构造合理的决策二叉树,实现了分类.对玉米幼苗及其伴生杂草的识别结果表明,基于SVM,利用决策二叉树的多类分类,可极大的提高分类精度,满足农业应用的实时性要求,与其他方法相比具有较好的结果.
雜草的識彆分類在精準農業的變量噴施中具有重要的作用.因此提齣瞭一種新的基于SVM(支持嚮量機),利用決策二扠樹在可見/近紅外圖像中識彆作物和雜草的方法.根據近紅外波段的光譜特性,利用閾值法實現瞭植物和土壤揹景的分割.將植物冠層的多光譜反射特徵、紋理特徵和形狀特徵相結閤,採用最大投票機製算法構造閤理的決策二扠樹,實現瞭分類.對玉米幼苗及其伴生雜草的識彆結果錶明,基于SVM,利用決策二扠樹的多類分類,可極大的提高分類精度,滿足農業應用的實時性要求,與其他方法相比具有較好的結果.
잡초적식별분류재정준농업적변량분시중구유중요적작용.인차제출료일충신적기우SVM(지지향량궤),이용결책이차수재가견/근홍외도상중식별작물화잡초적방법.근거근홍외파단적광보특성,이용역치법실현료식물화토양배경적분할.장식물관층적다광보반사특정、문리특정화형상특정상결합,채용최대투표궤제산법구조합리적결책이차수,실현료분류.대옥미유묘급기반생잡초적식별결과표명,기우SVM,이용결책이차수적다류분류,가겁대적제고분류정도,만족농업응용적실시성요구,여기타방법상비구유교호적결과.
Weed detection play an important role in variables spraying in precision agriculture. This paper presents a new SVM (support vector machine) method using decision binary tree to discriminate crop and weeds in visible/near infrared image. Vegetation is segment from soil according to spectral feature in near-infrared band based on threshold method. The multi-spectral reflectance features of vegetation canopy are combined with texture features and shape features. Then multiclass detection is achieved based on decision binary tree established by maximum voting mechanism. It was tested by discriminate maize seedling and its associated weeds. The validation tests indicated that SVM using decision binary tree could improve classification accuracy significantly, and meet real-time requirements of agricultural applications greatly. The proposed method has produced results superior to other approaches.