计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2009年
11期
3011-3014
,共4页
多尺度%谱描述器%特征点%数据配准%离散数据
多呎度%譜描述器%特徵點%數據配準%離散數據
다척도%보묘술기%특정점%수거배준%리산수거
multi-scale%spectral descriptor%feature point%data matching%discrete data
为了实现部分重叠且不同视角的测量数据配准,提出多尺度特征点检测算法,可以从大量的原始数据中提取少量特征点.该算法包括离散曲率计算、双边滤波和特征点计算等步骤,特征点个数可以由尺度参数粗略控制.提出局部形状谱描述器来描述每个特征点的局部形状特性,首先利用局域点的距离和曲率信息构造关系矩阵,然后通过计算关系矩阵的特征值来构造谱描述器,利用该描述器可以方便地计算不同点集中各个特征点的对应关系,进而实现两个数据点集的配准.通过实例验证了该算法有较好的抗噪性和运行速度.
為瞭實現部分重疊且不同視角的測量數據配準,提齣多呎度特徵點檢測算法,可以從大量的原始數據中提取少量特徵點.該算法包括離散麯率計算、雙邊濾波和特徵點計算等步驟,特徵點箇數可以由呎度參數粗略控製.提齣跼部形狀譜描述器來描述每箇特徵點的跼部形狀特性,首先利用跼域點的距離和麯率信息構造關繫矩陣,然後通過計算關繫矩陣的特徵值來構造譜描述器,利用該描述器可以方便地計算不同點集中各箇特徵點的對應關繫,進而實現兩箇數據點集的配準.通過實例驗證瞭該算法有較好的抗譟性和運行速度.
위료실현부분중첩차불동시각적측량수거배준,제출다척도특정점검측산법,가이종대량적원시수거중제취소량특정점.해산법포괄리산곡솔계산、쌍변려파화특정점계산등보취,특정점개수가이유척도삼수조략공제.제출국부형상보묘술기래묘술매개특정점적국부형상특성,수선이용국역점적거리화곡솔신식구조관계구진,연후통과계산관계구진적특정치래구조보묘술기,이용해묘술기가이방편지계산불동점집중각개특정점적대응관계,진이실현량개수거점집적배준.통과실례험증료해산법유교호적항조성화운행속도.
In order to align partly overlapped data clouds measured from different view points, a multi-scale feature points detection algorithm was proposed. A few feature points can be extracted from large number of original data quickly. This algorithm consists of three steps: discrete curvature computing, bilateral filtering and feature points detecting. The number of feature points can be controlled by scale parameter approximately. For each feature point, the authors proposed local shape spectral descriptor to identify its local shape characteristic. Firstly, an affinity matrix was constructed using distance and curvature information of points in neighborhood of a feature point, and then a few of eigenvalues of affinity matrix were used to form a shape descriptor, with which the correspondence between different data sets can be computed easily. Some examples prove that the method is robust and efficient for aligning large number of data with noise.