光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
3期
685-687
,共3页
杨建松%孟庆翔%任丽萍%周振明%解祥学
楊建鬆%孟慶翔%任麗萍%週振明%解祥學
양건송%맹경상%임려평%주진명%해상학
近红外%偏最小二乘法%牛肉品质%评定
近紅外%偏最小二乘法%牛肉品質%評定
근홍외%편최소이승법%우육품질%평정
Near-infrared reflectance (NIR)%PLS%Beef quality%Evaluation
应用近红外反射光谱技术(NIRS),采用偏最小二乘法(PLS),建立了牛肉理化特性的近红外预测模型.从屠宰加工厂选取经48 h排酸后的里脊、眼肉、腿肉、臀肉、外脊等部位的牛肉样品114份,采用多元散射校正(MSC)、一阶导数、标准正态变量(SNV)预处理方法,谱区为950~1 650 nm,建立牛肉水分、脂肪、蛋白质3个化学参数以及pH、肉色(CEI L*,a*,b*)和剪切力(WBSF)3个物理参数的校正模型.其校正相关系数(R~2)分别为0.947 2(水分),0.924 5(脂肪),0.934 6(蛋白质),0.620 2(pH),0.820 3(L*),0.864 6(a*),0.753 0(b*),0.475 9(WBSF).校正标准差(RMSEC)分别为0.313 3(水分).0.221 0(脂肪),1.243 2(蛋白),0.744 6(pH),1.778 3(L*),1.394 2(a*),1.763 9(b*),1.074 3(WBSF).应用所建立的模型对30个实际牛肉样品的理化参数进行预测,并对预测值与实测值进行t榆验,检验结果显示预测值与实测值差异不显著,说明模型适合于快速评价牛肉的品质.从预测的准确度看,化学指标预测的精确度明显高于物理指标.
應用近紅外反射光譜技術(NIRS),採用偏最小二乘法(PLS),建立瞭牛肉理化特性的近紅外預測模型.從屠宰加工廠選取經48 h排痠後的裏脊、眼肉、腿肉、臀肉、外脊等部位的牛肉樣品114份,採用多元散射校正(MSC)、一階導數、標準正態變量(SNV)預處理方法,譜區為950~1 650 nm,建立牛肉水分、脂肪、蛋白質3箇化學參數以及pH、肉色(CEI L*,a*,b*)和剪切力(WBSF)3箇物理參數的校正模型.其校正相關繫數(R~2)分彆為0.947 2(水分),0.924 5(脂肪),0.934 6(蛋白質),0.620 2(pH),0.820 3(L*),0.864 6(a*),0.753 0(b*),0.475 9(WBSF).校正標準差(RMSEC)分彆為0.313 3(水分).0.221 0(脂肪),1.243 2(蛋白),0.744 6(pH),1.778 3(L*),1.394 2(a*),1.763 9(b*),1.074 3(WBSF).應用所建立的模型對30箇實際牛肉樣品的理化參數進行預測,併對預測值與實測值進行t榆驗,檢驗結果顯示預測值與實測值差異不顯著,說明模型適閤于快速評價牛肉的品質.從預測的準確度看,化學指標預測的精確度明顯高于物理指標.
응용근홍외반사광보기술(NIRS),채용편최소이승법(PLS),건립료우육이화특성적근홍외예측모형.종도재가공엄선취경48 h배산후적리척、안육、퇴육、둔육、외척등부위적우육양품114빈,채용다원산사교정(MSC)、일계도수、표준정태변량(SNV)예처리방법,보구위950~1 650 nm,건립우육수분、지방、단백질3개화학삼수이급pH、육색(CEI L*,a*,b*)화전절력(WBSF)3개물리삼수적교정모형.기교정상관계수(R~2)분별위0.947 2(수분),0.924 5(지방),0.934 6(단백질),0.620 2(pH),0.820 3(L*),0.864 6(a*),0.753 0(b*),0.475 9(WBSF).교정표준차(RMSEC)분별위0.313 3(수분).0.221 0(지방),1.243 2(단백),0.744 6(pH),1.778 3(L*),1.394 2(a*),1.763 9(b*),1.074 3(WBSF).응용소건립적모형대30개실제우육양품적이화삼수진행예측,병대예측치여실측치진행t유험,검험결과현시예측치여실측치차이불현저,설명모형괄합우쾌속평개우육적품질.종예측적준학도간,화학지표예측적정학도명현고우물리지표.
The aim of the present study was to develop a near-infrared reflectance (NIR) spectroscopy rapid method for evaluation of beef quality.Partial least squares (PLS) prediction model for the physic-chemical characteristics such as moisture,fat,protein,pH,color and WBSF in beef was established with good veracity.One hundred fourteen samples from five different parts of beef carcass (tenderloin,ribeye,topside,shin,striploin) were collected from meat packer after 48 h aging.Spectra were obtained by scanning sample from 950 to 1 650 nm and pretreated the model by MSC,SNV and first derivative.Predictive correlation coefficients of physic-chemical parameters in beef were 0.947 2(moisture),0.924 5(fat),0.934 6(protein),0.620 2(pH),0.820 3(L),0.864 6(a*),0.753 0(b*) and 0.475 9(WBSF) respectively.Root mean square errors of calibration (RMSEC) were 0.313 3(moisture),0.221 0(fat),1.243 2(protein),0.744 6(pH),1.778 3(L*),1.394 2(a"),1.763 9(b*) and 1.0743(WBSF).They were externally validated with additional 30 beef samples.Statistics showed that there was no significant difference between predicted value and those obtained with conventional laboratory methods.The results showed that NIRS is a rapid,effective technique for evaluating beef quality.The predictions for chemical characteristics gave higher accuracy than prediction for physical characteristics.