计算物理
計算物理
계산물리
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS
2010年
2期
217-228
,共12页
雷贤良%李会雄%于水清%任大龙
雷賢良%李會雄%于水清%任大龍
뢰현량%리회웅%우수청%임대룡
超临界压力%大比热区%壁温分布%不均匀性%二次流%横向动能
超臨界壓力%大比熱區%壁溫分佈%不均勻性%二次流%橫嚮動能
초림계압력%대비열구%벽온분포%불균균성%이차류%횡향동능
supercritical pressure%large specific heat region%wall temperature distribution%ununiformity%secondary flow%transverse kinetic energy
对超临界压力水在管径为Φ32mm×3 mm、长度为8 000 mm、倾角为20°的倾斜光管内的流动与传热特性进行数值模拟研究,重点考察超临界水在大比热区内的奇异物性变化对倾斜管内的传热特性的影响.通过与实验数据的对比,验证计算模型的正确性;计算压力P=26,34 MPa.时,不同质量流速和热负荷下倾斜光管内壁温随超临界水焓值增大而变化的规律,以及倾斜光管内壁周向温度及热负荷分布的不均匀性;分析大比热区管内上下母线处内壁温度差随工质焓值变化的特性及机理,讨论大比热区水的物性变化对倾斜光管内传热不均匀性的影响;引入截面横向动能与截面相对横向动能两个变量对二次流的强度进行描述,重点考察超临界水在大比热区内的二次流的流动特点及其对倾斜管内传热特性影响的机理.并利用截面中垂线上的密度梯度定量分析二次流变化的规律,讨论超临界压力下大比热区内倾斜光管内壁温分布异常的机理.
對超臨界壓力水在管徑為Φ32mm×3 mm、長度為8 000 mm、傾角為20°的傾斜光管內的流動與傳熱特性進行數值模擬研究,重點攷察超臨界水在大比熱區內的奇異物性變化對傾斜管內的傳熱特性的影響.通過與實驗數據的對比,驗證計算模型的正確性;計算壓力P=26,34 MPa.時,不同質量流速和熱負荷下傾斜光管內壁溫隨超臨界水焓值增大而變化的規律,以及傾斜光管內壁週嚮溫度及熱負荷分佈的不均勻性;分析大比熱區管內上下母線處內壁溫度差隨工質焓值變化的特性及機理,討論大比熱區水的物性變化對傾斜光管內傳熱不均勻性的影響;引入截麵橫嚮動能與截麵相對橫嚮動能兩箇變量對二次流的彊度進行描述,重點攷察超臨界水在大比熱區內的二次流的流動特點及其對傾斜管內傳熱特性影響的機理.併利用截麵中垂線上的密度梯度定量分析二次流變化的規律,討論超臨界壓力下大比熱區內傾斜光管內壁溫分佈異常的機理.
대초림계압력수재관경위Φ32mm×3 mm、장도위8 000 mm、경각위20°적경사광관내적류동여전열특성진행수치모의연구,중점고찰초림계수재대비열구내적기이물성변화대경사관내적전열특성적영향.통과여실험수거적대비,험증계산모형적정학성;계산압력P=26,34 MPa.시,불동질량류속화열부하하경사광관내벽온수초림계수함치증대이변화적규률,이급경사광관내벽주향온도급열부하분포적불균균성;분석대비열구관내상하모선처내벽온도차수공질함치변화적특성급궤리,토론대비열구수적물성변화대경사광관내전열불균균성적영향;인입절면횡향동능여절면상대횡향동능량개변량대이차류적강도진행묘술,중점고찰초림계수재대비열구내적이차류적류동특점급기대경사관내전열특성영향적궤리.병이용절면중수선상적밀도제도정량분석이차류변화적규률,토론초림계압력하대비열구내경사광관내벽온분포이상적궤리.
Numerical simulation on flows and heat transfer of water at supercritical pressures in inclined upward smooth tubes of Φ32 mm ×3 mm at an angle of 20° respect to the horizon is made. Length of the tube is 8 000 mm. Influence of violent variation of water properties in the so-called "large specific heat region" on heat transfer characteristics was investigated. Numerical method was validated by comparing numerical results with experimental data. Variation of the inner surface temperature of tube wall with enthalpy of water, mass flow rate and heat flux were obtained at pressures of 26 MPa and 34 MPa, respectively. It was found that distributions of wall temperature, as well as heat flux, along tube wall' s circumference were non-uniform. Difference between top generatrix wall temperatures and the bottom generatrix wall temperature was analyzed. Effect of water properties in the so-call "large specific heat region" on heat transfer of water was also discussed. Two parameters, namely cross-section transverse kinetic energy and cross-section relative transverse kinetic energy were introduced to quantitatively describe intensity of secondary flow. And density grads along a cross-section perpendicular bisector were used to analysis secondary flow. Abnormal mechanism of inner wall temperature distribution in a large specific region in inclined upward tubes at supercritical pressures was discussed.