华南理工大学学报(自然科学版)
華南理工大學學報(自然科學版)
화남리공대학학보(자연과학판)
JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION)
2009年
11期
50-55
,共6页
电力系统%可靠性原始参数%模糊贴近度%优化GM(1,1)预测
電力繫統%可靠性原始參數%模糊貼近度%優化GM(1,1)預測
전력계통%가고성원시삼수%모호첩근도%우화GM(1,1)예측
power system%original reliability parameter%fuzzy nearness%optimized GM(1,1) prediction
考虑到可靠性原始参数的缺乏对电力系统可靠性评估结果的真实性和有效性影响很大,用优化的GM(1,1)模型预测可靠性原始参数,开发小样本系统.优化的GM(1,1)模型在以最小二乘法优化初值的基础上,分别求取不同时间段的原始参数序列的拟合数列,再以各拟合数列与原始数列之间的模糊贴近度为权重系数对预测值进行优化加权组合.此模型既能体现数据的最新变化态势,又能体现总体发展趋势,充分挖掘原始参数包含的信息量,克服传统GM(1,1)模型预测可靠性参数随预测点推移预测精度下降较快的缺点,尤其适用于新投入元件可靠性原始参数的多点预测.
攷慮到可靠性原始參數的缺乏對電力繫統可靠性評估結果的真實性和有效性影響很大,用優化的GM(1,1)模型預測可靠性原始參數,開髮小樣本繫統.優化的GM(1,1)模型在以最小二乘法優化初值的基礎上,分彆求取不同時間段的原始參數序列的擬閤數列,再以各擬閤數列與原始數列之間的模糊貼近度為權重繫數對預測值進行優化加權組閤.此模型既能體現數據的最新變化態勢,又能體現總體髮展趨勢,充分挖掘原始參數包含的信息量,剋服傳統GM(1,1)模型預測可靠性參數隨預測點推移預測精度下降較快的缺點,尤其適用于新投入元件可靠性原始參數的多點預測.
고필도가고성원시삼수적결핍대전력계통가고성평고결과적진실성화유효성영향흔대,용우화적GM(1,1)모형예측가고성원시삼수,개발소양본계통.우화적GM(1,1)모형재이최소이승법우화초치적기출상,분별구취불동시간단적원시삼수서렬적의합수렬,재이각의합수렬여원시수렬지간적모호첩근도위권중계수대예측치진행우화가권조합.차모형기능체현수거적최신변화태세,우능체현총체발전추세,충분알굴원시삼수포함적신식량,극복전통GM(1,1)모형예측가고성삼수수예측점추이예측정도하강교쾌적결점,우기괄용우신투입원건가고성원시삼수적다점예측.
As insufficient original reliability parameters greatly reduce the authenticity and effectiveness of the reliability assessment results of power systems, an optimized GM(1,1) model is used to predict original reliability parameters for the purpose of exploiting some small sample systems. In the optimized GM(1,1) model, the fitting series of the original parameter series within different time is obtained based on the optimization of the initial value using the least square method, and the fuzzy nearnesses between the original series and the fitting series are used as weight coefficients to treat the prediction values with weighted optimization. This model reflects not only the latest changes but also the overall development trend of data. Therefore, it fully exploits the information contained in ori-ginal parameters and solves the problem existing the conventional GM(1,1) model, namely the rapid decline of prediction precision with the prediction point. The proposed model is applicable to the multi-point prediction of original reliability parameters of new electricity components.