应用泛函分析学报
應用汎函分析學報
응용범함분석학보
ACTA ANALYSIS FUNCTIONALIS APPLICATA
2010年
3期
210-215
,共6页
变分不等式%p-Laplacian算子%补偿法%第一特征值%局部Lipschitz函数
變分不等式%p-Laplacian算子%補償法%第一特徵值%跼部Lipschitz函數
변분불등식%p-Laplacian산자%보상법%제일특정치%국부Lipschitz함수
variational inequality%p-Laplacian%penalty method%the first eigenvalue%locally lipschitz functional
考虑了-类p-Laplacian拟线性椭圆变分不等式问题,通过运用优化理论中的补偿法和Clark次微分性质,研究了这类椭圆变分不等式解的存在性.
攷慮瞭-類p-Laplacian擬線性橢圓變分不等式問題,通過運用優化理論中的補償法和Clark次微分性質,研究瞭這類橢圓變分不等式解的存在性.
고필료-류p-Laplacian의선성타원변분불등식문제,통과운용우화이론중적보상법화Clark차미분성질,연구료저류타원변분불등식해적존재성.
In this paper,we consider a class of quasilinear elliptic variational inequality involvingp-Laplacian,by using the penalty method from optimization theory and properties of Clark subdifferential,the existence of solutions for the problem is obtained.