数学杂志
數學雜誌
수학잡지
JOURNAL OF MATHEMATICS
2011年
1期
28-34
,共7页
有限群%非交换图%阶分量%Thompson猜想%AAM猜想
有限群%非交換圖%階分量%Thompson猜想%AAM猜想
유한군%비교환도%계분량%Thompson시상%AAM시상
finite group%non-commuting graph%order component%Thompson's conjecture%AAM's conjecture
本文研究了有限(几乎)单群的非交换图刻画问题.利用有限几乎单群的阶分量理论,证明了对于具有非连通素图的有限单群,AAM猜想成立,同时也证明了某砦几乎单群也能被其非交换图刻画.上述结果推广了文献f131的结果.
本文研究瞭有限(幾乎)單群的非交換圖刻畫問題.利用有限幾乎單群的階分量理論,證明瞭對于具有非連通素圖的有限單群,AAM猜想成立,同時也證明瞭某砦幾乎單群也能被其非交換圖刻畫.上述結果推廣瞭文獻f131的結果.
본문연구료유한(궤호)단군적비교환도각화문제.이용유한궤호단군적계분량이론,증명료대우구유비련통소도적유한단군,AAM시상성립,동시야증명료모채궤호단군야능피기비교환도각화.상술결과추엄료문헌f131적결과.
In this article,we discuss the characterization of some finite(almost)simple groups by their non-commuting graphs.By using the theory of order components of finite almost simple groups,we prove that AAM's conjecture is true for all finite simple groups with non-connected prime graphs.Moreover,we prove that some almost simple groups can be also characterized by their non-commuting graphs.All the above results generalize those results in[13].