计算机科学
計算機科學
계산궤과학
COMPUTER SCIENCE
2009年
12期
183-186
,共4页
调制识剐%级联模糊神经网络%高阶交叉累量%模糊推理%自适应
調製識剮%級聯模糊神經網絡%高階交扠纍量%模糊推理%自適應
조제식과%급련모호신경망락%고계교차루량%모호추리%자괄응
Modulation recognition%HFNNS%HOCC%Fuzzy inference%Adaptation
针对非平稳的数字调制信号,构造新的高阶交又累量特征;利用神经网络的学习机制实现自适应模糊推理调制识别器的非线性动态建模;采取分层决策的级联结构,提高了特征与识别器的契合度,最大程度上减少了隶属度函数和模糊规则的冗余;根据特征样本的大致分布建立蕴涵初始经验的级联模糊神经网络系统,使知识推理结构明确可控;通过样本训练实现结构参数自适应调整和优化,完成其逼近求精.仿真实验证明,该系统在信噪比等环境参数变化较大的情况下具有更好的稳健性,其算法识别率和效率相对于神经网络识别器和模糊识别器有明显提高.
針對非平穩的數字調製信號,構造新的高階交又纍量特徵;利用神經網絡的學習機製實現自適應模糊推理調製識彆器的非線性動態建模;採取分層決策的級聯結構,提高瞭特徵與識彆器的契閤度,最大程度上減少瞭隸屬度函數和模糊規則的冗餘;根據特徵樣本的大緻分佈建立蘊涵初始經驗的級聯模糊神經網絡繫統,使知識推理結構明確可控;通過樣本訓練實現結構參數自適應調整和優化,完成其逼近求精.倣真實驗證明,該繫統在信譟比等環境參數變化較大的情況下具有更好的穩健性,其算法識彆率和效率相對于神經網絡識彆器和模糊識彆器有明顯提高.
침대비평은적수자조제신호,구조신적고계교우루량특정;이용신경망락적학습궤제실현자괄응모호추리조제식별기적비선성동태건모;채취분층결책적급련결구,제고료특정여식별기적계합도,최대정도상감소료대속도함수화모호규칙적용여;근거특정양본적대치분포건립온함초시경험적급련모호신경망락계통,사지식추리결구명학가공;통과양본훈련실현결구삼수자괄응조정화우화,완성기핍근구정.방진실험증명,해계통재신조비등배경삼수변화교대적정황하구유경호적은건성,기산법식별솔화효솔상대우신경망락식별기화모호식별기유명현제고.
For the non-stationary digitally modulated signal a novel feature:High Order Cross Cumulant (HOCC) was proposed The non-linear dynamic modeling of an adaptive fuzzy modulation classifier,which based on the training mechanism within the neural network,was first presented.The model adopted the hierarchical decision-based structure,which made the features match the classifier and reduced the redundancy of the membership functions and fuzzy rules.According to the distribution of the feature samples,we established the Hierarchical Fuzzy Neural Network System (HFNNS) with initial experience to guarantee the controllability of the knowledge inference structure.By applying the training data,the algorithm adaptively adjusted and optimized the structure parameter and completed the approximation process.The simulation results verified the better robustness of the system in the presence of various environment parameters (SNR etc),as well as the improvement of the average probability of correct classification and the algorithm efficiency,compared with the neural network classifier and fuzzy classifier.