物理学报
物理學報
물이학보
2001年
2期
244-250
,共7页
戴永兵%沈荷生%张志明%孙方宏%莘海维%何贤昶%胡晓君
戴永兵%瀋荷生%張誌明%孫方宏%莘海維%何賢昶%鬍曉君
대영병%침하생%장지명%손방굉%신해유%하현창%호효군
金刚石%硅%异质界面%分子动力学
金剛石%硅%異質界麵%分子動力學
금강석%규%이질계면%분자동역학
采用分子动力学方法模拟研究了未重构的金刚石/硅(001)面相接触时界面层原子的弛豫过程及所形成的异质界面的结构特征.硅碳二元系统中原子间的相互作用采用Tersoff多体经验势描述.弛豫前沿[110]与[110]方向界面碳硅原子数之比均为3∶2.界面碳硅原子总数之比为9∶4.弛豫后金刚石与硅界面处晶格匹配方式改变为[110]方向基本上以3∶2关系对准,而[110]方向大致以1∶1关系对准.相应地,界面碳硅原子总数之比接近3∶2.界面下方部分第二层硅原子在弛豫过程中向上迁移至界面是引起这种变化的原因,同时该层其他原子及其底下一到两个原子层厚度的区域在[001]方向上出现一定程度的无序化转变倾向.金刚石/硅异质界面处的硅碳原子发生强烈键合,形成平均键长为0.189?nm的硅碳键.研究证实,晶格匹配主要呈现界面及其附近硅原子迎合界面碳原子排列的特点.
採用分子動力學方法模擬研究瞭未重構的金剛石/硅(001)麵相接觸時界麵層原子的弛豫過程及所形成的異質界麵的結構特徵.硅碳二元繫統中原子間的相互作用採用Tersoff多體經驗勢描述.弛豫前沿[110]與[110]方嚮界麵碳硅原子數之比均為3∶2.界麵碳硅原子總數之比為9∶4.弛豫後金剛石與硅界麵處晶格匹配方式改變為[110]方嚮基本上以3∶2關繫對準,而[110]方嚮大緻以1∶1關繫對準.相應地,界麵碳硅原子總數之比接近3∶2.界麵下方部分第二層硅原子在弛豫過程中嚮上遷移至界麵是引起這種變化的原因,同時該層其他原子及其底下一到兩箇原子層厚度的區域在[001]方嚮上齣現一定程度的無序化轉變傾嚮.金剛石/硅異質界麵處的硅碳原子髮生彊烈鍵閤,形成平均鍵長為0.189?nm的硅碳鍵.研究證實,晶格匹配主要呈現界麵及其附近硅原子迎閤界麵碳原子排列的特點.
채용분자동역학방법모의연구료미중구적금강석/규(001)면상접촉시계면층원자적이예과정급소형성적이질계면적결구특정.규탄이원계통중원자간적상호작용채용Tersoff다체경험세묘술.이예전연[110]여[110]방향계면탄규원자수지비균위3∶2.계면탄규원자총수지비위9∶4.이예후금강석여규계면처정격필배방식개변위[110]방향기본상이3∶2관계대준,이[110]방향대치이1∶1관계대준.상응지,계면탄규원자총수지비접근3∶2.계면하방부분제이층규원자재이예과정중향상천이지계면시인기저충변화적원인,동시해층기타원자급기저하일도량개원자층후도적구역재[001]방향상출현일정정도적무서화전변경향.금강석/규이질계면처적규탄원자발생강렬건합,형성평균건장위0.189?nm적규탄건.연구증실,정격필배주요정현계면급기부근규원자영합계면탄원자배렬적특점.
The structure of diamond/silicon interface, which was formed by the contact and the subsequent relaxation of the unreconstructed (001) surfaces of diamond film and silicon substrate, has been investigated by molecular dynamics simulation. The interaction among atoms of the silicon/carbon binary system was described by Tersoff many-body empirical potential. Before relaxation, the ratios of silicon atoms to carbon atoms along [110] and [110] directions are both 3∶2 and the ratio of the total number of interfacial silicon atoms to that of carbon is 9∶4. After relaxation, the matching of diamond and silicon lattices has been changed: along[110] direction, a 3∶2 coincidence relation is roughly remained, but along [110] direction, a 1∶1 coincidence relation is approximately adopted. Accordingly, the ratio of the total number of interfacial silicon atoms to that of carbon is near 3∶2. The migration of partial silicon atoms, which were originally in the second layer, upward to the interface is responsible for such changes. The silicon lattice near the interface shows the tendency of disordering along [001] direction. The strong bonding between interfacial silicon and carbon atoms was found and Si-C bonds with an average length of 0.189 nm were formed. This study has confirmed that the main feature of lattice matching is the meeting of silicon atoms at and near the interface to the arrangement of interfacial carbon atoms.