测绘
測繪
측회
SURVEYING AND MAPPING
2011年
6期
249-251
,共3页
拱项下沉%神经网络%小波去噪%收敛速度%预测研究
拱項下沉%神經網絡%小波去譟%收斂速度%預測研究
공항하침%신경망락%소파거조%수렴속도%예측연구
Vault sink%Neural network%Wavelet de-noising%Convergence rate%Prediction research
隧道拱顶下沉监测数据中含有大量的随机误差,为了消除或者消弱随机误差的干扰,本文对实测数据进行小波去噪,使数据更真实性。针对传统BP神经网络预测精度差、收敛慢的问题,通过改进的BP神经网络对去噪的数据进行预测。实验结果表明,并与传统BP神经网络相对比,小波去噪的改进神经网络收敛速度加快,精度提高,预测效果显著提高,适用于拱顶下沉的预测研究。
隧道拱頂下沉鑑測數據中含有大量的隨機誤差,為瞭消除或者消弱隨機誤差的榦擾,本文對實測數據進行小波去譟,使數據更真實性。針對傳統BP神經網絡預測精度差、收斂慢的問題,通過改進的BP神經網絡對去譟的數據進行預測。實驗結果錶明,併與傳統BP神經網絡相對比,小波去譟的改進神經網絡收斂速度加快,精度提高,預測效果顯著提高,適用于拱頂下沉的預測研究。
수도공정하침감측수거중함유대량적수궤오차,위료소제혹자소약수궤오차적간우,본문대실측수거진행소파거조,사수거경진실성。침대전통BP신경망락예측정도차、수렴만적문제,통과개진적BP신경망락대거조적수거진행예측。실험결과표명,병여전통BP신경망락상대비,소파거조적개진신경망락수렴속도가쾌,정도제고,예측효과현저제고,괄용우공정하침적예측연구。
Vault sink of tunnel contains a lot of random error. In order to eliminate or weaken interference of random error, the measured data was processed by wavelet de-noising that made the data more authenticity in the paper. Aiming at problems such as poor precision and slow convergence about BP neural network prediction, de-noising data was predicted by the improved BP neural network, which compared with traditional BP neural network. Experimental results showed the improved neural network of wavelet de-noising made convergence rate accelerate, accuracy improve, prediction result significantly enhance, it was true to prediction research of vault sink.