机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2010年
3期
90-96
,共7页
杜海峰%王娜%张进华%邵颉%王孙安
杜海峰%王娜%張進華%邵頡%王孫安
두해봉%왕나%장진화%소힐%왕손안
故障诊断%聚类%复杂网络分析%模块性指标%压缩机
故障診斷%聚類%複雜網絡分析%模塊性指標%壓縮機
고장진단%취류%복잡망락분석%모괴성지표%압축궤
Fault diagnosis%Clustering%Complex network analysis%Modularity%Compressor
从故障诊断的模式识别本质出发,利用网络表示故障数据结构,通过网络结构反映故障状态及其特征,把故障诊断聚类问题建模为子网络探测问题,提出基于网络结构分析的故障诊断策略.为了解决子网络划分中数据间相似度测度和划分测度设计这两个重要问题,引入复杂网络社群结构分析中的模块性概念,设计状态区分准则函数,并采用自底向上模块合并层次过程优化准则函数实现故障状态聚类,提出一种基于模块合并的故障诊断聚类算法.通过算法在标准数据集分类和真实压缩机故障系统诊断上的应用,分析相似度测度对算法的影响并验证了算法的性能.试验结果表明,与遗传算法,人工免疫网络等人工智能诊断方法相比,本文提出的算法能以较少的计算耗时,有效提取故障特征,获得理想的诊断正确率.
從故障診斷的模式識彆本質齣髮,利用網絡錶示故障數據結構,通過網絡結構反映故障狀態及其特徵,把故障診斷聚類問題建模為子網絡探測問題,提齣基于網絡結構分析的故障診斷策略.為瞭解決子網絡劃分中數據間相似度測度和劃分測度設計這兩箇重要問題,引入複雜網絡社群結構分析中的模塊性概唸,設計狀態區分準則函數,併採用自底嚮上模塊閤併層次過程優化準則函數實現故障狀態聚類,提齣一種基于模塊閤併的故障診斷聚類算法.通過算法在標準數據集分類和真實壓縮機故障繫統診斷上的應用,分析相似度測度對算法的影響併驗證瞭算法的性能.試驗結果錶明,與遺傳算法,人工免疫網絡等人工智能診斷方法相比,本文提齣的算法能以較少的計算耗時,有效提取故障特徵,穫得理想的診斷正確率.
종고장진단적모식식별본질출발,이용망락표시고장수거결구,통과망락결구반영고장상태급기특정,파고장진단취류문제건모위자망락탐측문제,제출기우망락결구분석적고장진단책략.위료해결자망락화분중수거간상사도측도화화분측도설계저량개중요문제,인입복잡망락사군결구분석중적모괴성개념,설계상태구분준칙함수,병채용자저향상모괴합병층차과정우화준칙함수실현고장상태취류,제출일충기우모괴합병적고장진단취류산법.통과산법재표준수거집분류화진실압축궤고장계통진단상적응용,분석상사도측도대산법적영향병험증료산법적성능.시험결과표명,여유전산법,인공면역망락등인공지능진단방법상비,본문제출적산법능이교소적계산모시,유효제취고장특정,획득이상적진단정학솔.
Fault diagnosis, whose essence is pattern recognition of object's operation state, can be accomplished through clustering methods. The network model is used to represent the fault data structure and thus the clustering problem is converted into the detection task for sub-network structures. Thereby, a fault diagnosis strategy based on complex network structure analysis is proposed. Corresponding to the two central issues for sub-network partition:similarity measure between samples and partition criteria, the modularity concept used broadly in the analysis of community structures in a complex network is introduced into the design of a states differentiating criterion function. To optimize this criterion and accordingly classify fault states, an agglomerative hierarchical clustering algorithm is developed. In applications such as benchmark data classification and four-stage piston compressor diagnosis problem, the effect of similarity measure on algorithm is discussed and the algorithm performance is testified. The comparative results with several artificial intelligent diagnosis algorithms show that the new algorithm can achieve higher diagnosis accuracy, and it is more straightforward, able to extract critical features of the data samples more accurately and therefore accomplishes data clustering with less computational cost.