航天器环境工程
航天器環境工程
항천기배경공정
SPACECRAFT ENVIRONMENT ENGINEERING
2007年
3期
135-139
,共5页
庞贺伟%龚自正%张文兵%杨继运%童靖宇%Xiang Shuhong
龐賀偉%龔自正%張文兵%楊繼運%童靖宇%Xiang Shuhong
방하위%공자정%장문병%양계운%동정우%Xiang Shuhong
超高速撞击%损伤模型%熔融石英玻璃%飞船舷窗%微流星体/空间碎片%风险评估
超高速撞擊%損傷模型%鎔融石英玻璃%飛船舷窗%微流星體/空間碎片%風險評估
초고속당격%손상모형%용융석영파리%비선현창%미류성체/공간쇄편%풍험평고
hypervelocity impact%fused silica glass%damage model%spacecraft windshield%M/OD%risk assessment
用北京卫星环境工程研究所的18mm口径二级轻气炮(TLGG)和20 J激光驱动微小飞片装置(LDFF-20)对用作航天器舷窗玻璃的熔融石英玻璃的超高速撞击损伤特性进行了实验研究和分析.其中,TLGG发射的球形铝弹丸直径分别为1 mm和3 mm,速度2~6.5 km/s;LDFF-20发射的圆柱形飞片厚度7 μm,直径1 mm,速度1~8.3 km/s.撞击结果为:对12 mm厚的熔融石英玻璃,直径为3mm的弹丸甚至在2.8 km/s的低速下就将其穿透,而直径为1 mm的弹丸在6.5km/s的高速下没有穿透,这说明弹丸直径对撞击损伤特性有很强的影响;LDFF-20发射的微小飞片的撞击仅在玻璃表面产生很浅的凹坑,没有裂纹产生,但微小飞片的累积撞击损伤明显地降低了玻璃的透光性.实验初步获得了侵彻深度PC、侵彻直径D1与弹丸撞击速度Vp、弹丸质量Mp之间的经验关系.依据实验结果和目前的微流星体/空间碎片(M/OD)环境工程模型,建议对于高度为400 km、轨道倾角42°、寿命为3年的典型航天器,其舷窗玻璃的临界安全(非穿透)厚度至少为12mm.
用北京衛星環境工程研究所的18mm口徑二級輕氣砲(TLGG)和20 J激光驅動微小飛片裝置(LDFF-20)對用作航天器舷窗玻璃的鎔融石英玻璃的超高速撞擊損傷特性進行瞭實驗研究和分析.其中,TLGG髮射的毬形鋁彈汍直徑分彆為1 mm和3 mm,速度2~6.5 km/s;LDFF-20髮射的圓柱形飛片厚度7 μm,直徑1 mm,速度1~8.3 km/s.撞擊結果為:對12 mm厚的鎔融石英玻璃,直徑為3mm的彈汍甚至在2.8 km/s的低速下就將其穿透,而直徑為1 mm的彈汍在6.5km/s的高速下沒有穿透,這說明彈汍直徑對撞擊損傷特性有很彊的影響;LDFF-20髮射的微小飛片的撞擊僅在玻璃錶麵產生很淺的凹坑,沒有裂紋產生,但微小飛片的纍積撞擊損傷明顯地降低瞭玻璃的透光性.實驗初步穫得瞭侵徹深度PC、侵徹直徑D1與彈汍撞擊速度Vp、彈汍質量Mp之間的經驗關繫.依據實驗結果和目前的微流星體/空間碎片(M/OD)環境工程模型,建議對于高度為400 km、軌道傾角42°、壽命為3年的典型航天器,其舷窗玻璃的臨界安全(非穿透)厚度至少為12mm.
용북경위성배경공정연구소적18mm구경이급경기포(TLGG)화20 J격광구동미소비편장치(LDFF-20)대용작항천기현창파리적용융석영파리적초고속당격손상특성진행료실험연구화분석.기중,TLGG발사적구형려탄환직경분별위1 mm화3 mm,속도2~6.5 km/s;LDFF-20발사적원주형비편후도7 μm,직경1 mm,속도1~8.3 km/s.당격결과위:대12 mm후적용융석영파리,직경위3mm적탄환심지재2.8 km/s적저속하취장기천투,이직경위1 mm적탄환재6.5km/s적고속하몰유천투,저설명탄환직경대당격손상특성유흔강적영향;LDFF-20발사적미소비편적당격부재파리표면산생흔천적요갱,몰유렬문산생,단미소비편적루적당격손상명현지강저료파리적투광성.실험초보획득료침철심도PC、침철직경D1여탄환당격속도Vp、탄환질량Mp지간적경험관계.의거실험결과화목전적미류성체/공간쇄편(M/OD)배경공정모형,건의대우고도위400 km、궤도경각42°、수명위3년적전형항천기,기현창파리적림계안전(비천투)후도지소위12mm.
Hypervelocity impact experiments were conducted on fused silica glass to obtain the damage characteristics and to build a damage model using Ly12 aluminum spheres of diameters 1 mm and 3 mm launched by the two-stage-light-gas gun of up to 6.5 km/s, and the small aluminum flyer of 1 mm in diameter and 7 μm in thickness launched by a laser-driven flyer facility of up to 8.3 km/s, developed by Beijing Institute of Spacecraft Environment (BISEE). The empirical damage equations were obtained to approximately predict the penetration depth (PC) and its diameter (D1) as a function of impact parameters (projectile velocityVp, mass Mp). For the Ly12 A1 projectile of 3 mm diameter sphere, the glass was perforated thoroughly even at a low impact velocity of 2.80 km/s. This means that the projectile diameter plays a major role with respect to the impact damage. The damage feature for the laser-driven small flyer is quite different, and only a shallow pit is formed in the glass surface. But the accumulative damage effects on the glass surface reduce the transmittance significantly. With the M/OD environment, it is suggested that the critical safety thickness (without perforation) of fused silica glass outer windshield is taken as 12 mm for a 400 km altitude orbit space station of 3 year's life time.