高能物理与核物理
高能物理與覈物理
고능물리여핵물리
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS
2003年
9期
803-807
,共5页
反常无规性%事件空间起伏%熵指数%多重数分布
反常無規性%事件空間起伏%熵指數%多重數分佈
반상무규성%사건공간기복%적지수%다중수분포
erraticity%event space fluctuation%entropy index%multiplicity distribution
通过运用蒙特卡罗方法,研究了熵指数对多重数分布的宽度和形状的依赖性,并和NA22实验结果作比较.发现,熵指数对多重数分布的形状变化不敏感,但是却随着分布宽度的增加而减小.这一发现和通常基于熵指数的物理意义的期待是矛盾的.
通過運用矇特卡囉方法,研究瞭熵指數對多重數分佈的寬度和形狀的依賴性,併和NA22實驗結果作比較.髮現,熵指數對多重數分佈的形狀變化不敏感,但是卻隨著分佈寬度的增加而減小.這一髮現和通常基于熵指數的物理意義的期待是矛盾的.
통과운용몽특잡라방법,연구료적지수대다중수분포적관도화형상적의뢰성,병화NA22실험결과작비교.발현,적지수대다중수분포적형상변화불민감,단시각수착분포관도적증가이감소.저일발현화통상기우적지수적물리의의적기대시모순적.
The dependence of entropy index μ2 on the width and shape of multiplicity distributions are studied in detail by using Monte Carlo method and comparing with the results from NA22 experiment. It is found that the entropy index is insensitive to the shape of multiplicity distribution but decreases with the increase of the distribution width. The latter observation contradicts the usu ally expected role of the index, indicating thatμq is not an appropriate parameter for measuring event-by-event fluctuation.