纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2010年
2期
149-155
,共7页
深反应离子刻蚀%锯齿流道%压电微泵%性能%效率
深反應離子刻蝕%鋸齒流道%壓電微泵%性能%效率
심반응리자각식%거치류도%압전미빙%성능%효솔
deep reactive ion etching%saw-tooth microchannel%piezoelectric micropump%performance%efficiency
以硅作为基底材料,采用深反应离子刻蚀(DRIE)技术加工出含有新型锯齿流道和传统锥形管的微泵,整个微泵结构为聚二甲基硅氧烷(PDMS)-玻璃-硅-PDMS式.采用阳极键合方法对硅和玻璃之间进行封装.PDMS和玻璃、PDMS和硅之间的封装采用紫外线照射方法,使PDMS表面改性,从而达到不可逆密封.分别对两种微泵在不同电压、频率以及波形驱动下的最大流量(MFR)和最大压力头(MPH)进行测试与比较,发现在固定频率下,两个微泵的最大流量和最大压力头均随驱动电压升高而升高,并且正弦波驱动下的效果要好于其他两种驱动波形;在固定电压下,最大流量随着频率升高在60 Hz和200 Hz两个频率点同时达到最大,最大压力头则在60~600 Hz内一直处于最大值不变;锯齿流道微泵的最大流量和最大压力头明显高于传统锥形微泵.由于流道侧面环形面积的存在增加了流通面积,新形锯齿形流道微泵的效率明显高于传统锥形管微泵.
以硅作為基底材料,採用深反應離子刻蝕(DRIE)技術加工齣含有新型鋸齒流道和傳統錐形管的微泵,整箇微泵結構為聚二甲基硅氧烷(PDMS)-玻璃-硅-PDMS式.採用暘極鍵閤方法對硅和玻璃之間進行封裝.PDMS和玻璃、PDMS和硅之間的封裝採用紫外線照射方法,使PDMS錶麵改性,從而達到不可逆密封.分彆對兩種微泵在不同電壓、頻率以及波形驅動下的最大流量(MFR)和最大壓力頭(MPH)進行測試與比較,髮現在固定頻率下,兩箇微泵的最大流量和最大壓力頭均隨驅動電壓升高而升高,併且正絃波驅動下的效果要好于其他兩種驅動波形;在固定電壓下,最大流量隨著頻率升高在60 Hz和200 Hz兩箇頻率點同時達到最大,最大壓力頭則在60~600 Hz內一直處于最大值不變;鋸齒流道微泵的最大流量和最大壓力頭明顯高于傳統錐形微泵.由于流道側麵環形麵積的存在增加瞭流通麵積,新形鋸齒形流道微泵的效率明顯高于傳統錐形管微泵.
이규작위기저재료,채용심반응리자각식(DRIE)기술가공출함유신형거치류도화전통추형관적미빙,정개미빙결구위취이갑기규양완(PDMS)-파리-규-PDMS식.채용양겁건합방법대규화파리지간진행봉장.PDMS화파리、PDMS화규지간적봉장채용자외선조사방법,사PDMS표면개성,종이체도불가역밀봉.분별대량충미빙재불동전압、빈솔이급파형구동하적최대류량(MFR)화최대압력두(MPH)진행측시여비교,발현재고정빈솔하,량개미빙적최대류량화최대압력두균수구동전압승고이승고,병차정현파구동하적효과요호우기타량충구동파형;재고정전압하,최대류량수착빈솔승고재60 Hz화200 Hz량개빈솔점동시체도최대,최대압력두칙재60~600 Hz내일직처우최대치불변;거치류도미빙적최대류량화최대압력두명현고우전통추형미빙.유우류도측면배형면적적존재증가료류통면적,신형거치형류도미빙적효솔명현고우전통추형관미빙.
The micropumps were fabricated by using deep reactive ion etching (DRIE) technology on silicon wafer to have the structure of the novel saw-tooth microchannels and the traditional diffuser microchannels. The whole structure of the micropump is polydimethylsiloxane (PDMS)-glass-silicon-PDMS. The sealing between the silicon and the glass wafer was carried out by anodic bonding technology. The irreversible sealing between the PDMS and glass, the silicon and PDMS were adopted by UV irradiation through the characteristic change of the PDMS surface. Moreover, the maximum pressure head (MPH) and the maximum flow rate (MFR) of the two micropumps were tested with different driving voltages, frequencies and signals. The comparison results show that the MPH and MFR values increase along with the driving voltage under the condition of the same frequency, and the effects of the sine wave driving are prior to those of other waves. Under the condition of the same voltage, the MFR simultaneously reaches the maximum values at 60 Hz and 200 Hz along with the increase of the frequency, whereas the MPH keeps the maximum value ranged from 60 Hz to 600 Hz all along. The performance of the micropump with the novel saw-tooth microchannels was enhanced greatly compared with the traditional diffuser micropump. We attribute the greater efficiency of the saw-tooth micropump compared with the traditional diffuser micropump to the existence of the vortex areas which increase the circulating areas.