稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2009年
9期
1518-1525
,共8页
张健%周惦武%黄雅妮%彭平%刘金水
張健%週惦武%黃雅妮%彭平%劉金水
장건%주점무%황아니%팽평%류금수
Mg(0001)表面%吸附%解离%能垒
Mg(0001)錶麵%吸附%解離%能壘
Mg(0001)표면%흡부%해리%능루
Mg(0001) surface%adsorption%dissociation%energy barrier
采用基于密度泛函理论的第一原理计算方法,研究了氢分子(H2)在清洁、空位缺陷及Pd原子吸附的Mg(0001)表面的吸附与解离性能.结果显示:H2在清洁Mg(0001)表面呈较弱的物理吸附,H2解离需克服较高的能垒(1.3774 eV);空位缺陷的存在增强了Mg表面对H2的物理吸附能力,且使H2的解离能垒(1.2221 eV)有所降低;而清洁表面吸附的Pd原子则会与H2产生强烈的化学吸附作用,极大地降低了H2的解离能垒(0.2860 eV).电子结构分析发现:3种表面对H2吸附与解离的催化活性与Mg(0001)表面最上层与H2直接产生吸附作用的金属原子在费米能级(EF)附近s轨道的成键电子数密切相关.
採用基于密度汎函理論的第一原理計算方法,研究瞭氫分子(H2)在清潔、空位缺陷及Pd原子吸附的Mg(0001)錶麵的吸附與解離性能.結果顯示:H2在清潔Mg(0001)錶麵呈較弱的物理吸附,H2解離需剋服較高的能壘(1.3774 eV);空位缺陷的存在增彊瞭Mg錶麵對H2的物理吸附能力,且使H2的解離能壘(1.2221 eV)有所降低;而清潔錶麵吸附的Pd原子則會與H2產生彊烈的化學吸附作用,極大地降低瞭H2的解離能壘(0.2860 eV).電子結構分析髮現:3種錶麵對H2吸附與解離的催化活性與Mg(0001)錶麵最上層與H2直接產生吸附作用的金屬原子在費米能級(EF)附近s軌道的成鍵電子數密切相關.
채용기우밀도범함이론적제일원리계산방법,연구료경분자(H2)재청길、공위결함급Pd원자흡부적Mg(0001)표면적흡부여해리성능.결과현시:H2재청길Mg(0001)표면정교약적물리흡부,H2해리수극복교고적능루(1.3774 eV);공위결함적존재증강료Mg표면대H2적물리흡부능력,차사H2적해리능루(1.2221 eV)유소강저;이청길표면흡부적Pd원자칙회여H2산생강렬적화학흡부작용,겁대지강저료H2적해리능루(0.2860 eV).전자결구분석발현:3충표면대H2흡부여해리적최화활성여Mg(0001)표면최상층여H2직접산생흡부작용적금속원자재비미능급(EF)부근s궤도적성건전자수밀절상관.
By the first-principles calculations method based on the density functional theory, H2 adsorption and dissociation properti-es on clean, vacancy defective and Pd atom coadsorption Mg(0001) surfaces are investigated systematically. The calculation results show that the model of H2 adsorption on clean surface is weak physisorption, and there is a high energy barrier, i.e., 1.3774 eV, when H2 dissociates into two separate H atoms. Vacancy defect not only benefits enhancing of the physisorption interaction between H2 and Mg surface, but also decreasing of the energy barrier, i.e., 1.2221 eV, of H2 dissociation to some extent. For Pd atom coadsorp-tion Mg(0001) surface, there is a strong chemisorption interaction between Pd atom and H2, and the energy barrier, i.e., 0.2860 eV, of H2 dissociation is reduced significantly. Further analysis of electronic structures shows that the catalytic activity for H2 adsorption and dissociation on three different surfaces is closely related to the bonding electrons number of s orbital of the topmost layer metal atoms which interact directly with H2 around Fermi level.