新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2004年
2期
92-96
,共5页
肖敏%杜续生%孟跃中%龚克成
肖敏%杜續生%孟躍中%龔剋成
초민%두속생%맹약중%공극성
氧化石墨%导电性%热解
氧化石墨%導電性%熱解
양화석묵%도전성%열해
Graphite oxide%Electrical conductivity%Pyrolyze
氧化石墨是石墨的氧化产物,由于它的碳层表面引入了很多极性功能团,使得很多分子都能够嵌入其层间形成纳米复合物,但也正是这些功能团使得它散失了石墨良好的导电性.为了考察氧化石墨受热处理后还原的可能性,通过X-射线衍射、扫描电镜、红外光谱分析以及元素分析等手段研究了氧化石墨在不同热处理条件下的结构变化.研究发现热处理时的升温速度对氧化石墨的结构影响很大,快速升温时,氧化石墨迅速分解,发生膨胀形成类似于膨胀石墨的含有丰富的50 nm至5 μm左右孔洞的一种结构;而当缓慢升温时,氧化石墨随着热处理温度的升高,逐渐恢复成类似于石墨的结构,同时电导率也随热处理温度的升高而提高,当热处理温度高于180 ℃时,电导率大于1 S/cm.这些结果表明利用氧化石墨作为前驱体,通过先制备聚合物/氧化石墨纳米复合物后经热处理来得到导电性的聚合物/碳纳米复合材料是可行的.
氧化石墨是石墨的氧化產物,由于它的碳層錶麵引入瞭很多極性功能糰,使得很多分子都能夠嵌入其層間形成納米複閤物,但也正是這些功能糰使得它散失瞭石墨良好的導電性.為瞭攷察氧化石墨受熱處理後還原的可能性,通過X-射線衍射、掃描電鏡、紅外光譜分析以及元素分析等手段研究瞭氧化石墨在不同熱處理條件下的結構變化.研究髮現熱處理時的升溫速度對氧化石墨的結構影響很大,快速升溫時,氧化石墨迅速分解,髮生膨脹形成類似于膨脹石墨的含有豐富的50 nm至5 μm左右孔洞的一種結構;而噹緩慢升溫時,氧化石墨隨著熱處理溫度的升高,逐漸恢複成類似于石墨的結構,同時電導率也隨熱處理溫度的升高而提高,噹熱處理溫度高于180 ℃時,電導率大于1 S/cm.這些結果錶明利用氧化石墨作為前驅體,通過先製備聚閤物/氧化石墨納米複閤物後經熱處理來得到導電性的聚閤物/碳納米複閤材料是可行的.
양화석묵시석묵적양화산물,유우타적탄층표면인입료흔다겁성공능단,사득흔다분자도능구감입기층간형성납미복합물,단야정시저사공능단사득타산실료석묵량호적도전성.위료고찰양화석묵수열처리후환원적가능성,통과X-사선연사、소묘전경、홍외광보분석이급원소분석등수단연구료양화석묵재불동열처리조건하적결구변화.연구발현열처리시적승온속도대양화석묵적결구영향흔대,쾌속승온시,양화석묵신속분해,발생팽창형성유사우팽창석묵적함유봉부적50 nm지5 μm좌우공동적일충결구;이당완만승온시,양화석묵수착열처리온도적승고,축점회복성유사우석묵적결구,동시전도솔야수열처리온도적승고이제고,당열처리온도고우180 ℃시,전도솔대우1 S/cm.저사결과표명이용양화석묵작위전구체,통과선제비취합물/양화석묵납미복합물후경열처리래득도도전성적취합물/탄납미복합재료시가행적.
Graphite oxide (GO) is an oxidation product of graphite. Due to the embedding of the functional groups in the carbon layers, GO exhibits rich intercalation chemistry but also loses the good electrical conductivity of graphite. To investigate the possibility of reducing GO by thermal treatment, the variation of the structures of the GO with the heat treatment conditions were studied by XRD, SEM, IR spectroscopy and elemental analysis. It is found that heating rate plays an important role in the structure of the thermal treated GO. When subjected to rapid heating, GO was decomposed into a very light soot containing many pores of different sizes in the range of 50 nm to 5 μm. When subjected to slow heating, GO tended to return to the graphene structure. The higher the thermal treatment temperature, the closer the crystal structure of the pyrolyzed GO is to that of the graphite and the higher the electrical conductivity of the pyrolyzed GO. The fact that the electrical conductivity of GO can be higher than 1 S/cm when it is treated at a temperature higher than 180 ℃ suggesting that it is possible to use GO as a precursor to make conducting polymer/carbon nanocomposites.