上海交通大学学报(医学版)
上海交通大學學報(醫學版)
상해교통대학학보(의학판)
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY(MEDICAL SCIENCE)
2009年
12期
1512-1514
,共3页
程雪峰%敖华飞%顾建%王勤%毛小慧
程雪峰%敖華飛%顧建%王勤%毛小慧
정설봉%오화비%고건%왕근%모소혜
特发性突聋%风险%数据挖掘%关联规则
特髮性突聾%風險%數據挖掘%關聯規則
특발성돌롱%풍험%수거알굴%관련규칙
sudden deafness%risk%data mining%association rules
目的 对特发性突聋的风险预测进行数据挖掘,并形成关联规则.方法 收集517例特发性突聋患者的临床资料,包括19项特征属性,分别为性别、年龄、季节、高血压、糖尿病、心脏病、高胆固醇血症、动脉粥样硬化、长期抽烟、酗酒、精神紧张、失眠、体质弱、长期卧床、感染、先天性畸形、创伤、肿瘤和自身免疫性疾病.将源数据库进行数据清洗后,映射为挖掘数据库;设置最小支持度为0.1,最小置信度为0.9,进行关联规则分析.结果 共形成106个强关联规则,这些强关联规则中蕴含特发性突聋与19项特征属性之间的关联关系.结论 本方法有利于将抽象的数理统计理论转变为实用的关联规则来指导疾病预防控制实践.
目的 對特髮性突聾的風險預測進行數據挖掘,併形成關聯規則.方法 收集517例特髮性突聾患者的臨床資料,包括19項特徵屬性,分彆為性彆、年齡、季節、高血壓、糖尿病、心髒病、高膽固醇血癥、動脈粥樣硬化、長期抽煙、酗酒、精神緊張、失眠、體質弱、長期臥床、感染、先天性畸形、創傷、腫瘤和自身免疫性疾病.將源數據庫進行數據清洗後,映射為挖掘數據庫;設置最小支持度為0.1,最小置信度為0.9,進行關聯規則分析.結果 共形成106箇彊關聯規則,這些彊關聯規則中蘊含特髮性突聾與19項特徵屬性之間的關聯關繫.結論 本方法有利于將抽象的數理統計理論轉變為實用的關聯規則來指導疾病預防控製實踐.
목적 대특발성돌롱적풍험예측진행수거알굴,병형성관련규칙.방법 수집517례특발성돌롱환자적림상자료,포괄19항특정속성,분별위성별、년령、계절、고혈압、당뇨병、심장병、고담고순혈증、동맥죽양경화、장기추연、후주、정신긴장、실면、체질약、장기와상、감염、선천성기형、창상、종류화자신면역성질병.장원수거고진행수거청세후,영사위알굴수거고;설치최소지지도위0.1,최소치신도위0.9,진행관련규칙분석.결과 공형성106개강관련규칙,저사강관련규칙중온함특발성돌롱여19항특정속성지간적관련관계.결론 본방법유리우장추상적수리통계이론전변위실용적관련규칙래지도질병예방공제실천.
Objective To apply data mining to risk prediction of sudden deafness, and form the association rules.Methods The clinical data of 517 patients with sudden deafness was collected, including the characteristics of 19 attributes: sex, age, season, hypertension, diabetes, heart disease, hypercholesterolemia, atherosclerosis, long-term smoking, alcoholism, mental tension, insomnia, weakness, bedridden, infection, congenital malformation, trauma, tumour and autoimmune diseases. The source database were cleaned, then mapped for mining database. Minimum support to 0.1 and minimum confidence level to 0.9 were set for analysis of association rules. Results One hundred and six strong association rules were formed, and the rules contained the relation between the incidence of sudden deafness and the characteristics of 19 attributes. Conclusion This method is conducive to make the abstract theory of mathematical statistics into useful association rules to guide the practice of disease prevention and control.