冶金分析
冶金分析
야금분석
METALLURGICAL ANALYSIS
2010年
3期
1-6
,共6页
韩美%胡净宇%陈玉红%王海舟
韓美%鬍淨宇%陳玉紅%王海舟
한미%호정우%진옥홍%왕해주
激光烧蚀%电感耦合等离子体质谱法%高温合金%痕量元素%集合式%屑样
激光燒蝕%電感耦閤等離子體質譜法%高溫閤金%痕量元素%集閤式%屑樣
격광소식%전감우합등리자체질보법%고온합금%흔량원소%집합식%설양
laser ablation%inductively coupled plasma mass spectrometry%superalloy%trace elements%aggregated%chips
全面优化了激光烧蚀电感耦合等离子体质谱法(LA-ICP-MS)分析镍基高温合金的工作参数;考察了激光进样的质谱干扰问题;选择合金元素Ti作内标;尝试并比较了多种屑状标准物质固定方式,即采用胶粘方式将屑样固定在平板玻璃上的集合式标准物质来代替块状标样进行定量分析,较好地解决了由于缺乏基体匹配的块状标准物质而限制LA-ICP-MS应用于定量分析的问题.所建立了LA-ICP-MS法应用于高温合金标准物质中B、Mg、Al、Cu、Zn、Ga、Ge、As、Se、Ag、Cd、In、Sn、Sb、Te、Tl、Pb、Bi等18种痕量元素的分析,B、Mg、P、Se的测定下限小于10 μg/g,其他元素的测定下限小于1 μg/g,大多数元素的RSD值均小于15%.应用于一组高温合金样品中B、Zn、As、Ag、Bi等10种痕量元素的分析,测定结果与参考值吻合较好.
全麵優化瞭激光燒蝕電感耦閤等離子體質譜法(LA-ICP-MS)分析鎳基高溫閤金的工作參數;攷察瞭激光進樣的質譜榦擾問題;選擇閤金元素Ti作內標;嘗試併比較瞭多種屑狀標準物質固定方式,即採用膠粘方式將屑樣固定在平闆玻璃上的集閤式標準物質來代替塊狀標樣進行定量分析,較好地解決瞭由于缺乏基體匹配的塊狀標準物質而限製LA-ICP-MS應用于定量分析的問題.所建立瞭LA-ICP-MS法應用于高溫閤金標準物質中B、Mg、Al、Cu、Zn、Ga、Ge、As、Se、Ag、Cd、In、Sn、Sb、Te、Tl、Pb、Bi等18種痕量元素的分析,B、Mg、P、Se的測定下限小于10 μg/g,其他元素的測定下限小于1 μg/g,大多數元素的RSD值均小于15%.應用于一組高溫閤金樣品中B、Zn、As、Ag、Bi等10種痕量元素的分析,測定結果與參攷值吻閤較好.
전면우화료격광소식전감우합등리자체질보법(LA-ICP-MS)분석얼기고온합금적공작삼수;고찰료격광진양적질보간우문제;선택합금원소Ti작내표;상시병비교료다충설상표준물질고정방식,즉채용효점방식장설양고정재평판파리상적집합식표준물질래대체괴상표양진행정량분석,교호지해결료유우결핍기체필배적괴상표준물질이한제LA-ICP-MS응용우정량분석적문제.소건립료LA-ICP-MS법응용우고온합금표준물질중B、Mg、Al、Cu、Zn、Ga、Ge、As、Se、Ag、Cd、In、Sn、Sb、Te、Tl、Pb、Bi등18충흔량원소적분석,B、Mg、P、Se적측정하한소우10 μg/g,기타원소적측정하한소우1 μg/g,대다수원소적RSD치균소우15%.응용우일조고온합금양품중B、Zn、As、Ag、Bi등10충흔량원소적분석,측정결과여삼고치문합교호.
Laser-ablation conditions and plasma conditions have been optimized for the analysis of nick-el-base superalloy sample. Spectral interferences of laser ablation inductively coupled plasma massspectrometry(LA-ICP-MS) were investigated. Titanium was chosen as the internal standard. Several manners have been attempted and evaluated to fix up superalloy chips. The aggregated chips on a plate glass by double-sided adhesive could be a good substitute of bulk reference materials. As a result, the correction limitation caused by the lack of matrix-matched bulk reference materials was gotten over. The method was applied to analyze eighteen trace elements (B, P, Sc, Cu, Zn, Ga, Ge, As, Se, Ag, In, Sn, Sb, Te, Hf, Tl, Pb and Bi) in CRM of superalloy, and the determination limits of most ele-ments were lower than 1 μg/g except B, Mg, P and Se lower than 10 μg/g. For most of trace ele-ments in CRMs, RSDs were smaller than 15 %. Furthermore, ten trace elements in four samples were quantitatively analyzed by the method, and the quantitative results agreed well with the certified val-ues.