中国科学技术大学学报
中國科學技術大學學報
중국과학기술대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
2008年
5期
460-465
,共6页
Hardy不等式%到边界的距离%临界点
Hardy不等式%到邊界的距離%臨界點
Hardy불등식%도변계적거리%림계점
Hardy's inequality%distance to boundary%critical point
建立了含到边界距离的Hardy-Poincaré不等式,并得到新空间中的嵌入紧性结果.此外,考虑一类含到边界距离的半线性椭圆型方程.首先,研究相应的特征值问题并得到特征值的一些性质.然后,利用这些结果及临界点理论在一个新的Hilbert空间中证明了方程非平凡解的存在性.
建立瞭含到邊界距離的Hardy-Poincaré不等式,併得到新空間中的嵌入緊性結果.此外,攷慮一類含到邊界距離的半線性橢圓型方程.首先,研究相應的特徵值問題併得到特徵值的一些性質.然後,利用這些結果及臨界點理論在一箇新的Hilbert空間中證明瞭方程非平凡解的存在性.
건립료함도변계거리적Hardy-Poincaré불등식,병득도신공간중적감입긴성결과.차외,고필일류함도변계거리적반선성타원형방정.수선,연구상응적특정치문제병득도특정치적일사성질.연후,이용저사결과급림계점이론재일개신적Hilbert공간중증명료방정비평범해적존재성.
A Hardy-Poincare inequality with distance to boundary (e)Ω was established. A compactness result of embedding was obtained in a new space. Moreover, a class of semilinear elliptic equations with distance to boundary was studied. Firstly, the corresponding eigenvalue problem was studied and some properties of eigenvalues were obtained. By means of these preliminaries and the critical point theory, several existence results of nontrivial solutions to the original equation were proved in a new Hilbert space.